Newscoop 3
Cookbook

The open content management system
for professional journalists

EEEEEEEEEEEEEEEEEEEEEEE

Newscoop’

SOURCEFABRIC

NEWSCOOP 3
COOKBOOK

Updated for version 3.5.2

NEWSCOOP 3 COOKBOOK
THE OPEN CONTENT MANAGEMENT SYSTEM FOR
PROFESSIONAL JOURNALISTS

PUBLISHED: April 2011
Updated for Newscoop 3.5.2

This documentation is free documentation. You can redistribute it and/
or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, Version 3.

This documentation is distributed in the hope that it will be useful,
but without any warranty; without even the implied warranty

of merchantability or fitness for a particular purpose. See the
GNU General Public License for more details. You should have
received a copy of the GNU General Public License along with this
documentation; if not, write to:

Free Software Foundation
51 Franklin Street, Suite 500
Boston, MA 02110-1335
USA

Trademarked names may appear in this book. Rather than use

a trademark symbol with every occurrence of a trademarked name,
we use the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

This manual has been edited and reworked in a collaborative effort led
by FLOSS Manuals. Thanks to all contributors!

COVER DESIGN: Till Sperrle, ITF Grafikdesign
DOCUMENT CREATION: FLOSS Manuals
ISBN: 978-3-9814137-1-7

NEWSCOOP IS DEVELOPED AND MAINTAINED BY SOURCEFABRIC.
COMMENTS AND QUESTIONS CAN BE SENT TO:

Sourcefabric o.p.s.

Salvatorska 10

110 00 Praha |

Czech Republic

contact@sourcefabric.org

www.sourcefabric.org

PUBLISHED BY: Sourcefabric Publishing - Micz Flor - PrinzessinnenstraBe 20 - 10969 Berlin

TABLE OF CONTENTS

INTRODUCTION

2
3
4
5

Ready to cook?

Newscoop sites to get you inspired
About this book

Who we are

Resources

PLANNING YOUR PUBLICATION

6
7
8
9

Turning your idea into a publication
Planning your workflow
Subscriptions and revenue
Structuring your content

FROM DESIGN TO TEMPLATES

10
Il
12
13
14
15

The power of $gimme

Best practices for designing your content
Preparing designs for templates
Organising template files

Tips and tricks for the template novice
Installing template packs

MAKING YOUR TEMPLATES

16
17
18
19
20
21
22
23

Publication

Issues

Sections

Articles

Article comments

Sites in multiple languages
Search templates

Making a 404 page template

ADVANCED TEMPLATING

24
25
26
27
28
29
30
31
32
33
34
35
36
37

Topics, switches, keywords to structure content
Managing static pages

List of popular articles (most read)

List of latest comments

Using maps

Managing multiple authors and articles
Subscriptions, registration and content access
Browser detection and robots (search engines)
Mobile device detection and templates

Tag clouds using topics

Dynamic page layouts

Working with images

Pagination of lists and long articles

Audio player for attached MP3 files

— 0 O A~ N

13
16
18
23

26
30
34
37
40
43

46
50
52
54
59
65
68
72

75
79
8l
83
85
89
90
97
101
103
106
107
(N
114

38
39
40
41

TEMPLATES USING JQUERY, PHP AND THIRD PARTY SERVICES

42
43
44
45
46
47
48
49
50
51
52
53
54

RSS, sitemap, KML and XML
Search engine optimisation (SEO)
Newscoop and HTML5
Troubleshooting templates

Using jQuery and PHP in templates
Pulldown menu with Superfish using jQuery
Tabs with jQuery

Ticker with jQuery

Image galleries with jQuery

Calendars with jQuery

Using polls with AJAX

Widgets: YouTube, Vimeo, Twitter, Flickr & Co.
Profile pictures: Gravatar, Facebook, Twitter
Combining Newscoop and SoundCloud
Working with Facebook

Working with advertising

Ways to create archives

TEMPLATE REFERENCE

55
56

Language elements and conventions

Basic syntax

TEMPLATE REFERENCE - OBJECTS

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Introduction to Newscoop objects
Article object and attachment, comment, location
Author and author biography

Browser

Image

Issue

Language

Publication

Section

Subscription

Subtitle (subheads in long articles)
Template

Topic

URL

User

Default objects (list of all available objects)

TEMPLATE REFERENCE - CONTROLLING OBJECTS

73
74
75

Set objects
Unset objects
Local - temporary variable environment

TEMPLATE REFERENCE - LISTS

76

List articles and article related content

17
125
130
132

139
142
146
148
149
153
157
159
164
166
169
172
174

181
183

189
190
197
199
203
204
205
206
207
208
209
210
211
212
214
215

217
223
226

228

77
78
79
80
8l
82

List article topics and subtopics

List of issues and sections

List subtitles (pagination of long articles)
List images

List languages

List search results

TEMPLATE REFERENCE - FORMS

83
84
85
86
87
88

TEMPLATE REFERENCE - MAPS AND GEOLOCATION

89
90
91
92

Search form

Login and registration form
Subscription form

Comment form

Action check on form submission
General form elements and functions

Map

Displaying a map
Location multimedia
Geolocation search

TEMPLATE REFERENCE - MODIFIERS

93 Date and e-mail formatting

94 File size formatting

95 Truncating UTF8 strings

96 URL display and modifying
APPENDIX

97

Credits and license

24|
244
248
250
253
255

258
260
265
267
269
272

275
276
278
279

281
283
284
285

290

INTRODUCTION

I. READY TO COOK?

2. NEWSCOOP SITES TO GET YOU INSPIRED
3. ABOUT THIS BOOK

4. WHO WE ARE

5. RESOURCES

. READY TO COOK?

Have your tools ready. Photo by Brittany Silverstein (CC-BY).

Welcome to the Newscoop 3 Cookbook! Newscoop is an open content management
system for professional journalists. Designed by newsroom experts, it powers professional
newspapers and magazines worldwide. It meets the demands of modern journalism with
intuitive interfaces, flexible publishing, multilinguality, geolocation tools, social media
integration, and powerful templates compatible with HTML5 and mobile devices. You can
find out more about Newscoop at http://newscoop.sourcefabric.org

Like every good cookbook, this book has lots of good recipes, ideas and tips for creating

online publications with good taste, and which taste good too. And, like every good cook,
there are a few utensils and ingredients you should have in your kitchen and ready to go.
This manual will provide you with enough advice and code examples to get a high-quality
site up and running with Newscoop.

The Newscoop 3 Cookbook will walk you through all the stages of creating an online
publication. We start at the planning stage, because in our experience at Sourcefabric,
careful planning helps avoid future obstacles. Then we walk through the design process, into
the stage of converting the design into templates. The following chapters guide you from the
essential need-to-know, to the advanced, and finally more exotic ways of using Newscoop
for your publication.

You can get going quickly with the template packs from the Sourcefabric website. It's
possible to adjust these pre-made template packs to your needs. In the long term, spending
time to understand the possibilities of Newscoop will help you to create a unique
publication that stands out from the crowd. It also allows time to reflect on the organic
processes unique to each news organization, and therefore to each Newscoop deployment.

http://newscoop.sourcefabric.org

WHERE TO GO FOR INFORMATION, HELP AND SERVICES

We have more documentation on Newscoop. There is a manual aimed at journalists and
editors, a wiki based reference guide, and more. You can access these resources at:
http://manuals.sourcefabric.org

There are support and developer forums provided by Sourcefabric. Meet the Newscoop
teams, ask for help and offer support if you know the answers. These forums can also be
followed via e-mail.

http://forum.sourcefabric.org/

You can subscribe to our newsletter and read the latest blog posts at:
http://www.sourcefabric.org/newsletter

And see the development milestones, report bugs and request features at:
http://dev.sourcefabric.org

Our development wiki with the latest documentation can be found here:
http://wiki.sourcefabric.org

If you need help or want Sourcefabric to do the job for you, get in contact with Services at:
http://services.sourcefabric.org

Sourcefabric provides guaranteed paid support and services for Newscoop, including
custom template development, consulting, project management and implementation.

http://manuals.sourcefabric.org
http://forum.sourcefabric.org/
http://www.sourcefabric.org/newsletter
http://dev.sourcefabric.org/
http://wiki.sourcefabric.org/
http://services.sourcefabric.org

2. NEWSCOOP SITES TO GET YOU INSPIRED

Before we get right into Newscoop templates, first we can take a look at what others have
achieved. Newscoop's community is diverse and international, and the sites it powers are
also quite diverse in their coverage and specialization. Some are daily newspaper sites, some
are online portals, some are radio stations, and some are superpowered blogs.

FLUTER.DE

Lo CRERTIUTER. miPRESSUN FLUTER-HERT 2
u el‘. 1

THEMA FOKUS FILM LESEN MUSIK ERFAHRUNGEN DOSSIERS MEDIATHEK MITMACHEN
[— — —

41 BRIGHTON ROCK

Neo-Noir-Gangsterfilm: Die
Neuverfilmung von Graham
| Greenes Klassiker um den
Kleingangster Pinkie
Brown, der eine
unerwiinschte Zeugin
einfach heiratet, blickt in.
‘menschliche Abgriinde und
die Folgen einer
selbstzerstdrerischen Liebe. Hier kannst du eigene Texte
verbffentlichen und mit anderen
diskutieren. Registriere dich jetzt und mach
mit.

P REGISTRIEREN
DIE GEFAHR ALS STANDIGER p rogex
A REGLEITER

A youth culture portal based in Berlin, http://www fluter.de has been an active member of
the Newscoop community almost since its beginning. Fluter's installation makes effective
use of jQuery (notably Superfish pulldown menus - described later in this cookbook).
Fluter's 'Mediathek’ is also notable - it's an online archive of video and audio that uses
Newscoop's media archive and enables site visitors to make their own video playlists.

THEMA
Was jetzt?

Willkommen bei fluter.de

WEST AFRICA DEMOCRACY RADIO

Aboutus Partners RSS English Frangais

{NLISTENLIVE cu

o032t r2s3s f »

PROGRAM SCHEDULE PODCAST
Y I

April 21,201

The gun war may be largely
over in the Ivory Coast, but
the war against hunger and
epidemic is still very much
alive, as more than eight
hundred thousand displaced
people are running out of
food and water.

o)]

o) D tend

> “?: e [anaad |
Sk

L Gulfof.

0Comments » Fulric Sunet

http://www.fluter.de

West Africa Democracy Radio http://www.wadr.org is a news and talk radio network, with
content broadcast on FM, satellite, and online. It has more than thirty affiliate stations
covering the region. WADR's website makes extensive use of Newscoop's multilinguality,
Soundcloud plugin, news ticker, topics, and maps - all of which are documented in this
Cookbook.

EL PERIODICO

odico | laTarjeta Fota Blog

NUEVO CHEVROLET
COFINO

CRUZE saam b
CAMBIA LAS REGLAS - PBH: 1765

elPeriodico

Guatemala, 1

Portada Pais Economia Opinién Deportes elMundo Cultura Ciencia & Tecnologia Investigacién Suplementos Obituario Domingo

it biaionrd COMPARTE TUS BUSQUEDAS
Instituciones $ AMIGOS
gubernamentales .
incumplen con brindar
informacion que debe
ser publica

Comentarios: 3 2 : WIWW.PAGINASAMARILLAS.COM

Guatemala's acclaimed investigative newspaper has two notable sites running on Newscoop
- its main site at http://www.elperiodico.com.gt and a sports site at
http://deportes.elperiodico.com.gt.

RED elPeriodico elPeriodico Deportive laTarjeta Foto Blog

eleriodico

INICID FUTBOL MAS DEPORTES OPINION GALERIA

Monarca blanco

Both sites make extensive use of jQuery; the news site enables readers to customize their
home pages, for example. EIPeriodico also provides access to an important archive which
serves all articles since the site launched in 2004 (check the chapter Ways to create archives
in this book).

http://www.wadr.org
http://www.elperiodico.com.gt
http://deportes.elperiodico.com.gt

EL FARO

€1 Sdper de €1 Salvador

If r ©eifaro O wed 21 de abril de 2011
NACONALES ~ NTERNACONALES ELAGORA OPNGN ESPECIALES FOTOS VIDEOS RADID SABORES SALANEGRA MEDIAKT

TEMAS | Comupdén \ WikiLesis | Cndidat ntes "\ Pandillas | Libros y documental sobr tads

O

Experto en guerrillas declarara a favor de
Vides Casanova en juicio
Eljuicio contra el general Carlos Eugenio Vides Casanova evoca tiempos de a guerra fria. Un diplomatico de la

administracién de Jimmy Carter o acusa de violaciones a derechos humanos, mientras exfuncionarios del

gobiemo de Ronald Reagan defenderan que el militar evitd |a expansién del comunismo, en coincidencia con el

LOS MIGRANTES
UENO

interés de Washington.

0
IMPORTAN

A Efren Lemus.

Central America's first online news site http://www.elfaro.net is updated continuously,
every day. El Faro's "Radionoticias" service uses article attachments and a Flash audio player
to serve a large amount of audio (see the Cookbook chapter Audio player for attached files).
They also make extensive use of photojournalism, based on Newscoop's media archive (see
the chapter Working with images).

GORAD.BY

T e e M Commmm 6 - -

KPAMAICBET ~ MATINEY OMAHCHI [PAWANCTEA S[APOHH BOMBHBIMAC SJAPOVE CrOPT

anoyHbIs HaBiHbI Kancynetauwsis

© Kak noacrpaxosatsca, koraa
B oBnactHoli 6ubnuotexe - Assuws & gonr

Macxa

© Kax ysonumeca c paGorel, ecnn
paboToaarens nporve

© KaK npasinbHo COCTaBUTL peatome,
uT06sl 3auHTepeCoBaTS.
paBoTonarens

Hac xayT sseagonagel

PacrpepensiTs cTyAeHTOB XOTAT yxke

Ha NATOM Kypce © Crout nu craHoauTsCa WM 1 kak

ApoiiTH peruicTpayIO

—Anbna HHE

Minsk's http://www.gorad.by is an online newspaper which posts about twenty items per
day. The Newscoop-powered site uses jQuery slideshows extensively (see the chapter here
on Image galleries with jQuery), calendar-based archives (explained in the chapter Calendars
with jQuery), and Facebook integration (described in the chapter Working with Facebook).

http://www.elfaro.net
http://www.gorad.by

KOSMOBLOG

KosmoBlog = CH

Co robi NGO na NK.pI? S English

dodaj komentarz - Polski

szukaj

O autorze

N\
Jakub Gérnicki
Journalist.

MiniBlog
"Droga protest” -
interaknywna o¢ czasu od

NGQ na NK.pl | S

24 Marzec 2011

Jakub Gornicki is a leading blogger in Poland, who moved his blog to Newscoop at the
beginning of 201 | when he started working with Sourcefabric. Using a new sample template
set based on Lucian Marin's "The Journalist" theme adapted for Newscoop, Kosmoblog
makes use of Newscoop's multilingual features (he blogs in Polish and English), search
engine optimization techniques like keywords in the URL and sitemap (described in the
chapter Search Engine Optimization) and Disqus comments (also described later).

You can find a wide-ranging list of sites using Newscoop on the Sourcefabric website:
http://sourcefabric.org/en/products/newscoop_whosusing/

http://sourcefabric.org/en/products/newscoop_whosusing/

3. ABOUT THIS BOOK

Updated to Newscoop 3.5.2

The Newscoop 3 Cookbook is a work in progress and open to your input. Dedicated to
Open Source software development, Sourcefabric believes that the software and its
documentation are open to the community. The more contributors add to the products,
the more errors get caught and fixed, the more features are implemented. We also believe
that software improves from good documentation, and documentation improves with the
wide use of software.

If you experience the Newscoop 3 Cookbook in its printed form, it might be difficult to see
how this book is open to your contribution. If you have come across the Newscoop 3
Cookbook online at FLOSS Manuals, you might get a better idea about how you can
participate in improving this documentation. Register, log in and add your knowledge, use
cases, your code snippets, comments and best practices to make this a better publication.
Working with the online book production platform Booki, the content of this book is
continuously evolving. Chances are, the latest PDF, ePub or the online version on the site
http://www flossmanuals.net contains more details than the printed copy.

."'F:r‘-’} & 2

"All work and no play..." - the Newscoop Cookbook team at work.

Sourcefabric started this publication with a one-week Book Sprint in Schloss Neuhausen,
Germany, two hours north of Berlin. Authors for the Newscoop 3 Cookbook include (in
reverse alphabetical order): Holman Romero, Ljuba Rankovi¢, Lucian Marin, Micz Flor, Alexei
Danilchuk and Douglas Arellanes. Our facilitator, chef, sprintmaster, captain and all-around
make-it-happen person was Adam Hyde of FLOSS Manuals. Thanks also go to Katerina
Michailidis for her logistical support and to Daniel James for copy and style editing.

If you contribute to this book, you may also want to add yourself as an author here...

http://www.flossmanuals.net

4. WHO WE ARE

The Newscoop community comes from a diverse and international background of
journalists, editors, developers, implementers, trainers, designers, documentation writers
and others who care about Free Software and Free Media. The community finds its focus in
Sourcefabric http://www.sourcefabric.org, the non-profit foundation which maintains the
Newscoop project, as well as other tools and activities related to its mission of providing
media organisations with the open source software, tools and support to produce quality
journalism.

A last minute photo shoot from the annual "Sourcecamp" community gathering, held in Berlin in 2010, before the participants - who came from 12
countries - got into their trains, planes and automobiles back home.

Newscoop was first released under the name of "Campsite" in 2000. After substantial
rewriting, it was renamed to "Newscoop" in January, 201 |. Newscoop and Campsite have
always been free and open source (always under the GNU General Public License) and will
remain so.

About Sourcefabric

Sourcefabric o.p.s. is a not-for-profit organisation based in Prague, Czech Republic, with
branches in Berlin, Germany and Toronto, Canada, and satellite offices in Warsaw, Minsk,
Cluj, and Guatemala City.

The Sourcefabric partners Sava Tati¢, Micz Flor and Douglas Arellanes were among the key
people behind an initiative led by the Media Development Loan Fund http://www.mdlf.org to
support open source solutions for independent media organizations in emerging
democracies. The Media Development Loan Fund's Center for Advanced Media, Prague, or
CAMP, consolidated a lot of work that had been happening since 1999 to develop user-
centric, financially-viable, multilingual platforms for journalists. Sourcefabric is the
continuation of that endeavour, but with greatly expanded aims and a new organisational
structure.

http://www.sourcefabric.org
http://www.mdlf.org

We are concerned with the 'fabric' of these things - their structures, relations and
interactions. At the core of our experience and vision is a commitment to enable quality
journalism. We do this through open source software and services that address these
structures with solutions that are flexible, strong and interwoven; just like fabric.

5. RESOURCES

In this Cookbook we often refer to the Newscoop template pack called "The Journal". If
you are interested in sniffing out some other sneaky tricks in this (or other) template packs,
you can go to the Sourcefabric website and download template packs from
http://www.sourcefabric.org/en/products/newscoop templates/

TOOLS

Before you begin a Newscoop implementation, getting these things together really should be
your first steps.

e Working Newscoop installation

e Text editor, preferably one with PHP markup

® |mage editor for preparing designs and images (GIMP, Photoshop, etc.)

e Site specification (see the next chapter, Turning your idea into a publication)

The steps to successfully install Newscoop can be found in the "Newscoop for Journalists
and Editors" manual at http://manuals.sourcefabric.org

While Newscoop includes a template editor which works perfectly well, you'll probably
prefer to work locally on your computer. Good text editors include Gedit on Ubuntu, Kate
on Kubuntu, Notepad++ or even Dreamweaver on Windows, and of course command line
editors like Emacs, vi, pico and nano.

http://www.sourcefabric.org/en/products/newscoop_templates/
http://manuals.sourcefabric.org

PLANNING YOUR
PUBLICATION

6. TURNING YOUR IDEA INTO A PUBLICATION
7. PLANNING YOUR WORKFLOW
8. SUBSCRIPTIONS AND REVENUE
9. STRUCTURING YOUR CONTENT

6. TURNING YOUR IDEA INTO A PUBLICATION

While it's a natural impulse to want to jump right into the more hands-on chapters of the
Newscoop Cookbook, you'll save yourself a lot of time and trouble if you approach your
Newscoop implementation project in the way we recommend here. These
recommendations represent consensus among our community on best practices for
Newscoop implementations.

One very important initial step is to understand the human element to the technology
you're about to implement - who is involved in the project? You can benefit a lot from
understanding who fulfils the following:

e Who makes decisions? Who makes decisions on the site project? Who makes
decisions on coverage, articles and resource allocation?

® Who is the technical person? Who's the person in charge of the operation of the
site, e-mail accounts and the like?

e Who has which role in the current workflow? How do things get done now, and who
does it?

e What is the expected new workflow? How will things work for the staff after the
new site project is finished?

e What are the current and expected visitation patterns for readers of your
publication?

Being thorough at this stage helps to avoid making incorrect decisions or getting your
decisions overturned at a later stage. In the worst case, you could end up with a
dysfunctional design, and quite likely a dysfunctional project.

Draft a site specification that goes into as much detail as possible for the implementation,
but remains flexible enough in the event of inevitable changes. This site specification,
essentially the project's blueprint, should especially take into consideration the following:

WHEN IS THIS PROJECT CONSIDERED A SUCCESS?

What are the criteria for considering the project a success? For example, is the goal to
increase page views or decrease the bounce rate! Is the goal to increase readership among a
certain demographic or country?

Does the project do enough to make sure those goals are met?

Are the solutions you're proposing appropriate for the task at hand? If increasing reader
time on site is a goal, does the site display enough "additional stories" links?

DO YOU KNOW ENOUGH ABOUT THE ORGANISATION?

Make sure you get as much information as possible on the following:

What do you know about your audience? Has market research been conducted? If so, what
does it say? If your publication is using the Google Analytics tool, what does it say? What are
the audience's needs, interests and technical capabilities? Needs and interests can also be
things that the team can provide, but your users' technical capabilities (especially as
delivered by Google Analytics) can help you determine the optimal design and level of
interactivity for the project, affecting everything from font size to browser compatibility.

What is the functionality required? As much as you can, list and describe the functionality
required in the project. Brief descriptions should suffice, but if you're thorough enough,
you'll minimize the inevitable "Uh-oh, we forgot about <$fill_in_the blank>" moments.

Which functionality is top priority? Which things are "nice-to-have," as opposed to "must-
have?" When the success criteria are clear, the answers to these questions should get a lot
clearer too. Limited budgets also work pretty well to force clearer prioritization.

Sitemap and features

Get or produce a site map of the existing content structure. What content does the site
have, and how is it arranged? How often is the site currently updated? Is there content
being created that is going underutilized?

For example, the current site may be a blog publishing 10 items per day, and because it's a
blog, items are published in a reverse chronological order with newest articles first. But
major stories are getting buried by newer, less-important entries. This would be something
to address with the new site structure.

Discuss the proposed new site structure. Does the new site involve multiple languages?
Issues and sections, or topics? How often will the site be updated? Will you create a new
issue every day/week/month? How many sections will the new site have, and what are their
names?

Subscriptions or no subscriptions?

If you plan to use subscriptions on your site, find out as much as you can about the
subscription and paywall mechanisms involved. What are the revenue expectations for the
new subscription-based site? What are those expectations based on (market research or a
snowball's chance in hell)? Are there markets for the content that have not previously been
considered? For example, many countries have significant diasporas interested in getting
news from home, and they're often willing to pay for quality news. For more on this, see the
chapter about contemplating Subscriptions and revenue.

Workflow

What is the content workflow? Who on the staff is responsible for which content? You'll
find a lot more on this in the chapter on Planning your workflow.

Mashups, social media and other third-party services

What third party services are involved? List the intended integration with third-party
services (if any). Social media, video, audio, comments and other widgets would count here.
How complicated will the envisioned integration be?

This Cookbook includes examples and code snippets for Soundcloud, Disqus, YouTube,
Vimeo, Flickr, Twitter, Facebook, Gravatar and others.

Custom development to set you apart

What additional custom development is required (if any)? Are you going to do any of this
custom development yourself, or will there be another contractor to handle it? If your
project requires custom development, it's very important to clearly specify not only the
functionality required, but also the ways it will extend or interact with Newscoop's APIs.
Also, it's helpful to work closely with the Newscoop core developers, so that they can
provide advice and feedback, as well as including any plugins or add-ons in future Newscoop
releases.

FINAL STEPS AND TIME TABLE

Once the draft of the specification is ready, have all team members go over it and comment,
and then when everybody's OK with it, finalize it. If you're in an organization with one or
more big bosses, get them to sign off on it. Then your team can make binding time/work
estimates for the project.

While such a specification might seem like a lot of work (it usually is), it will give you a much
better idea of the overall scope of the project, and will also help you to make a more
realistic estimate of the time and labor involved.

7. PLANNING YOUR WORKFLOW

Newscoop users Nestan Tsetskhladze and Eteri Turadze of Netgazeti.ge in Batumi, Georgia. Photo by Douglas Arellanes (CC-BY)

Who is doing what? And when? What does it require and what depends on it? Who can do
it? Who has to do it? And who signs off what's being done? All those questions can be
grouped together into one concept: Workflow.

"Workflow" is one of those terms that gets discussed a lot among newsroom technology
types, but workflow means many things to many people.

"A workflow consists of a sequence of connected steps. It is a depiction of a sequence of
operations, declared as work of a person, a group of persons, an organization of staff, or one
or more simple or complex mechanisms" is how Wikipedia describes it.

In Newscoop, workflow refers to the steps that must be taken in order to accomplish a
certain task, usually related to publishing content on your site. Inside Newscoop there are
three main milestones hardwired into the system which have proven to capture the
essence of the article publishing process:

e New - the article has been generated, either by your staff or a citizen journalist

e Submitted - the article has been fact checked, images are added, the sub editor
approves

e Published - either manually or automatically, the article goes live

You can fine tune this process in Newscoop with custom switches for Article Types. For
more detailed technical information, please see the chapter on Topics, switches and keywords
to structure content, as well as the chapter in the manual Newscoop 3 for Journalists and
Editors titled Publishing Articles.

But publishing articles is only a small part of the overall workflow of running a site, in fact:
Newscoop has built-in publishing automation to do the job for you, once you have lined up
the articles. There are a lot more aspects that you will need to consider at the beginning of
your site planning, such as:

16

What are the steps the editors will have to take in order to place an article in the top
position on the site? The top position might be determined by most recently published, by
having the editor click and drag items in the section, by assigning a topic to an article with a
name of "top story", or maybe by attaching a custom switch. All of those approaches are
valid and possible, but it's up to you (and your point of contact at the organization) to figure
out what's best for their purposes.

Does the proposed workflow correspond to current staff levels? Does the functionality
you're planning for the new site require a much larger staff? In other words, who's going to
take and prepare all the photos for the very cool JQuery slideshow widget you want to
implement? (What, you're a radio station and don't have too many photos in your archive?)
Who's going to be in charge of monitoring site comments? Who's in charge of the overnight
shift on the site? (Wait, you mean there's going to be an overnight shift?!?)

What are the issues that could lead to staff resistance to the project? While you may think
that your slideshow widget is cool, the staff may say "this stupid slideshow widget means my
workload is doubled!" The more you can anticipate issues with staffing and work with your
point of contact to address them, the better off your project will be.

Who are the staff members capable of taking on the new roles your project introduces? For
example, who are the avid social media advocates on the staff, and can they be brought in to
take on the publication's social media tasks?

Where are the project's time and work savings for the staff, or will the project mean that
everyone will have to stay late every day? Explaining time savings or additional burdens
accurately and clearly will make you a lot of friends both on the staff and with the publisher.

Is your proposed workflow too complicated for non-technical staff? For example, when you
have a dynamic page layout based on custom switches, are the steps clearly communicated
to the staff, and are they clear on how to do it?

What are the ways your proposed workflow can fail? What can you do to simplify things
without giving up basic functionality? Often, a proposed design and its accompanying
workflow is too complicated for the staff to execute on a regular basis. If the staff can't do it,
you'll need to make sure your design and approach doesn't fail.

KEEP AN OPEN MIND

Editors on tight deadlines love things that are simple to use. Well, as simple as possible,
anyway. Such solutions never work on live sites!

Instead, try to solve undesired situations by fine-tuning your templates. Try to put yourself
in the position of an editor, and predict the possible mistakes they'll make when they have
to live with your work on a daily basis. Stay flexible and implement changes soon after the
team agrees on them. A website is like a living organism; you'll have to look after it.

8. SUBSCRIPTIONS AND REVENUE

Newscoop provides the means to manage access to content with subscriptions. A
subscription means that parts of your publication are only visible to users who are
registered and logged in. By default, subscriptions are disabled - and planning your
publication is completely unaffected by this chapter. Just proceed and make your
publication. If you change your mind, come back to this chapter later and activate the
Newscoop subscription system without changing your publication structure or content. If,
on the other hand, you came to Newscoop because it provides an in-built subscription
system, by all means, read on.

Because of the ongoing difficulties news organizations face in bringing in revenue, many have
turned to subscriptions as a way of making money for their content. There's been a lot of
heated debate about subscriptions or "paywalls" around content, but it's important to note
that subscription management has been part of the code base in Newscoop since 1999, and
has represented a significant source of revenue for many media organizations.

It's also important to point out that subscriptions do not necessarily have to be paid. You
may decide that your publication will require that visitors share certain demographic
information in return for site access, or you may decide that certain areas of the site are for
members only. Or perhaps membership is sponsored by an advertiser, who provides free
site access in return for the opportunity to promote their product to subscribers.

Newscoop flexibly supports subscription models. This allows you to switch from free to
paid services and back again. Users can register themselves on your publication. The
payments made for subscriptions need to be handled by your staff and applied to user
profiles. Newscoop currently does not support fully automated transactions, where, for
example, a user signs up for a subscription, pays by credit card and then immediately has
site access.

ACCESS CONTROL FOR CONTENT AND FEATURES

Newscoop provides a fine-grained way to manage content in relation to subscribers and
non-subscribers. You can set content to be subscriber-only:

e For all content in a publication

e For all content in a specific section

e For all content in a specific language

e On an article-by-article basis

® For an IP address range (useful when selling corporate subscriptions or to libraries)

If a reader ventures into an area on your site where they do not have access, you can
manage in your templates what they will get to see - or what they will be able to do (like
writing comments). Newscoop is very flexible in changing this access on the template level.
In another chapter of this Cookbook, you will find the nitty-gritty of templating for
subscriber pages. Also, below you will find details of how to administer subscriptions in the
administration interface.

When preparing your publication's site map, it's a very good idea to map out which parts of
the site - if any - will be visible to subscribers only. It's also important to try to figure out
how much of each article you want to display to non-subscribers. According to these
decisions you might also plan the fields in an article - there could be a part of the article
which is only available to subscribers, like the phone number in classifieds, while everything
else is available to all readers.

For our purposes as site implementers, here are some things to consider:

Is the entire publication for subscribers only?

Which sections are for subscribers only?

Which pages are free to non-subscribers? The front page? The section page?

How much of the article is free to non-subscribers?

What will your page "sorry, this page is for subscribers only" say, and how will it look?
What information will you require from your subscribers?

Once you do work out your site's subscription strategy, you should read the chapter about
Subscriptions, registration and content access in this Cookbook for specific templating
approaches.

MANAGING SUBSCRIPTIONS IN THE ADMIN INTERFACE

The list of subscribers is available in the Newscoop administration interface by clicking on
Users in the main navigation menu, then Subscribers:

ACTIONS CONFIGURE USERS PLUGINS

DASHBOARD CONTENT

ff

Subscribers

Dashboard
Add more widgets

Recently Modified Articles

The subscription management interface includes a search tool which enables you to list
readers according to several criteria, including subscription expiry date:

DASHBOARD CONTENT ACTIONS CONFIGURE USERS PLUGINS

Users >
Subscriber management

% Add new subscriber

Full Name | AN Account Name | other E-Mail | example,
Subscription | expires ||| before ~||| z011-03-01 (YYYY-MM-DD)

IP address: | 192 | .| 181 | . . (fill in from left to right at least o

Full Name <} Account Name E-Mail Subscriptions Creation Date

AN. Other-reader a.n.other reader@example.com Subscriptions 2011-02-07 17:

The duration of paid or trial subscriptions is determined by the default time periods set
when you created the publication. (You can change these settings for your publication by
clicking the Configure icon in the Publication list). During a trial period, the reader has a
chance to make a payment, and consequently to have their subscription extended by an
administrator.

The publication's administrator is automatically notified by e-mail of all new subscriptions.
Subscribers also receive automatically generated e-mail reminders that their subscription
will expire in two weeks. The text of the subscription expiry message is created in a
Newscoop template. The default system template reads as follows:

"Dear <reader>,

This is an automatically generated e-mail message. Your <subs_type>
subscription (started on <start_date>) to publication <publication> will
expire on <date> (in <number> days) .

Please enter the site http://<pub_site> to update subscription."

This file is located in the system_templates folder and is named _subscription_notifier.tpl. It
can and should be customized to best suit your needs and style.

IP address access

Publishers often sell corporate or institutional subscriptions, and Newscoop has support
for these out of the box. Newscoop's IP based access feature can be used to automatically
log in subscribers that have IP (Internet Protocol) addresses in a known range. This means
that groups of readers with computers within that IP range do not need account names or
passwords to access your subscription-only content.

To create an IP Address subscription, go to the subscriber management page in the
administration interface, in the drop-down menu under Users -> Subscribers.

First, create a subscriber account by clicking on the 'Add new subscriber' link, next to the
green plus sign icon. Enter an account name, a password, and a full name with an e-mail
address and phone number for a contact at the subscribing group or institution. You do not
need to inform individual readers using IP address access of the existence of this account
name and password; it's only for the subscriber contact.

20

DASHBOARD CONTENT ACTIONS CONFIGURE USERS PLUGINS

Users Subscribers

Add new subscriber

Account name: |AN University Library ‘

Password Generator: x*J85nMgv

B89 Strong

Password:

Confirm password:

Full Name: | Q.T. Librarian \

E-Mail: | gt@example.com ‘

Phone: | +1 234 567 8910

a Show more user details

I

Once the new subscription account has been created, click on the Add new link in the
User IP access list management table on the right hand side of the page.

:count name: AN University Library STEEEIS & add new
Full Name: | Q.T. Librarian | No subscrintians
E-Mail: ‘ qt@example.com | User IP access list management o Add new

Phone: | +1 234 567 8910 No records.

Click here to change password

Show more user details

The form allows the input of a range of consecutive IP addresses. If necessary, more ranges
can be added later. The start IP address is the lowest address in the range, while the
number of addresses sets the size of the range, including any address ending in zero. For
example, if a university library had the range of IP addresses 198.51.100.0 to 198.51.100.63,
then you would enter:

e start IP address: 198.51.100.0
o number of addresses: 64

21

Subscriptions 4 Add new

No subscriptions.

- Add oy
User IP access list management ol Add new

Mo records.
Start IP: 198 | .[51 |. /100 .|0

Mumber of addresses: | 64|

It is not necessary to add anything to the Newscoop templates for IP based subscriptions to
work.

It is also possible to search for subscribers based on known IP addresses. In the search box
on the Subscriber management page, enter a number in at least one box in the field labelled
IP address, starting on the left side. Click the Search button, and the page will display all
subscribers that have known IP addresses which match that number (or numbers).

ADVERTISING AND NEWSCOOP

The other side of the revenue equation for most online publishers is advertising. For this
purpose, we recommend the robust and open source OpenX system
http://www.openx.org

Ad insert codes - whether they are served from your own OpenX server, a banner ad
display network or a service like Google AdWords - can be included in any template or sub-
template, so you have complete flexibility in both placement and size.

You can also build your own templates to manage your banners. All three options
are explored in greater detail in the chapter Working with advertising.

22

http://www.openx.org/publisher/open-source-ad-server

9. STRUCTURING YOUR CONTENT

Newscoop's built-in logic for organizing content follows a logical and hierarchical structure
derived from print publications. The following structure is built in by default:

e Publication, which consists of chronologically ordered issues

e Issue, which consists of sections

e Sections, which store articles

e Articles, which can be of different Types

e Article Types, which you can build specifically for your publication

You can overrule this structure and change this hierarchy to fit your publication. For
example, you could use issues as containers for storing the site's substructure (without
chronological importance, for example). Or you could have only one issue with lots of
sections. Some situations are best handled with multiple publications, while others might
work best with an emphasis on Topics, not Sections.

How you organize your content usually depends on:

e The nature of the content being published
® The workflow inside your team

e The amount of content to be published

e The rate new content is added

EXAMPLE: MAGAZINE

Let's imagine the website of an existing weekly print magazine. In this Cookbook, we often
use the template pack "The Journal" which reflects magazine structure. "The Journal" covers
topics like politics, business, science and technology, health, entertainment and sports. In
such a situation, it's logical to use the built-in publication > issue > section > article
structure in a straightforward way.

In Newscoop, you don't need to create a new issue from scratch every time - just select
'Add new issue' and then 'Use the structure of the previous issue' - you'll get an empty
copy of the previous issue with all of its sections, settings and assigned templates.

"The Journal" can be seen at_http://journal.templates.sourcefabric.org/

And another example, "Newsport", can be seen at
http://newsport.templates.sourcefabric.org/

EXAMPLE: RADIO STATION SITE

Newscoop can be used to power a radio station website, where content is bilingual, and
where the 'publication’ only has one issue. Each radio show has a section, and individual
articles can be added into this section when a new episode of the show has been broadcast.
Breaking news items are presented on the front page.

Newscoop's Soundcloud plugin can be used to upload individual audio clips and attach them
to news articles. Recordings of entire shows can be uploaded and displayed on show
articles. In addition, Sourcefabric's Airtime broadcast software can be used to automatically
record live shows and upload them to Soundcloud.

23

http://journal.templates.sourcefabric.org/
http://newsport.templates.sourcefabric.org/

An example of this approach can be seen at West Africa Democracy Radio's site at
http://www.wadr.org.

EXAMPLE: BLOG

Newscoop can be used as a blogging platform, which is especially suitable for group blogs or
blogs with multiple authors and sections. For this purpose you might choose a structure
where issues are months, or you could have yearly issues. The website front-end doesn't
have to reflect the issue structure, as Newscoop can generate the listing of articles
regardless of where they are in the structure; for example, ordering them by publication
date.

Inside the blog, you can structure your content with Newscoop Topics. Topics are flexible
and could either be used like tags, or in a hierarchical structure like categories or a
taxonomy. Find out more about topics later in this manual.

An example of how Newscoop can be used as a high-end multi-lingual blogging platform can
be seen in "The Journalist" template from Sourcefabric. The online demo is at
http://journalist.templates.sourcefabric.org/

Any other structure logic can be developed and used with Newscoop. It's really a matter of
good planning, and analysis of the factors discussed at the beginning of this chapter.

24

http://www.wadr.org
http://journalist.templates.sourcefabric.org/

FROM DESIGN TO
TEMPLATES

10. THE POWER OF $GIMME

I 1. BEST PRACTICES FOR DESIGNING YOUR CONTENT
12. PREPARING DESIGNS FOR TEMPLATES

I 3. ORGANISING TEMPLATE FILES

I 4. TIPS AND TRICKS FOR THE TEMPLATE NOVICE

I 5. INSTALLING TEMPLATE PACKS

25

I 0 THE POWER OF $GIMME

Now that you're venturing into the territory of Newscoop, $gimme serves as your map and
compass. $gimme is your reliable friend, your eager spy and the keeper of all knowledge.
$gimme will give you information and answer your questions. "Give me the name of the
article", "Give me the number of the issue", are requests $gimme will follow without even a
shrug. Obviously, "give me" is how $gimme got its name. And $gimme speaks a simple

language, along the lines of "gimme publication name" or "gimme user email."

$GIMME AND THE NEWSCOOP TEMPLATE LANGUAGE

We like to refer to Newscoop's template language as a programming language for news.
$gimme lets you list and arrange articles, display text and multimedia, prepare content for
third-party services and include external content. It allows editors total design freedom and
doesn't push them into a single way of presenting their stories.

EASY TO USE, EASY TO READ

The philosophy behind the Newscoop template language (and $gimme) has been to make it
as intuitive and easy to use as possible. Here's how you would use $gimme to display the
name (or headline) of an article, like "Newscoop 3 Cookbook now in shops™":

|{{ Sgimme->article->name }}

Here's how you would use $gimme to display a section's description, such as "Film Reviews
from the Venice Film Festival"

|({ Sgimme->section->description }} ‘

Display the date when an issue was published:

[{{ $gimme—>issue->publish_date }} ‘

Display the file name of an article attachment:

|((Sgimme->article->attachment->file_name }}

Display the caption of an image, like "Work started at Berlin's new airport":

|{{ $gimme->image->caption }} ‘

Display the map provider you're using for your site's base maps:

|{(Sgimme->map->provider }} ‘

Here are some more examples along the same lines:

{{ $gimme->article->keywords }}

{{ $gimme->article->comment->subject }}

{{ $gimme->publication->default_language }}
{{ S$gimme->author->name }}

{{ S$gimme->author->biography—->text }}

{{ $gimme->image->photographer }}

{{ $gimme->user—>name }}

g oUW N

26

l 8. {{ Sgimme->user->phone }}

And there's more. In the following chapters you'll see $gimme in action, providing all kinds
of information added by editors and journalists.

SEPARATION OF PRESENTATION AND CONTENT

Web designers use the concept of "separation of presentation and content" every day when
developing in HTML and CSS. In the HTML you can emphasize parts of the content with
the em element, so whatever is wrapped inside tags is "what" needs to be
emphasized. "How" the emphasis is being displayed can be set in the CSS file, assigning font
family, size, style, color and so on.

Develop your design without touching any code

The Newscoop template engine gives you maximum flexibility to develop templates in
HTML, CSS and JavaScript any way you like. You don't need to think in terms of blocks or
widgets, and you can use sample text like "Lorem ipsum" when fine-tuning your layout.
Turning your design into a template for Newscoop means to replace the sample text with
$gimme. Here is a simple example. Here's the HTML we want to serve:

1. <div>Media and Journalism</div>

<h2>Newscoop Cookbook released</h2>

3. Anything web developers need to know about the CMS for professional journ
alists in one comprehensive desktop reference

N

Separating content from presentation in the Newscoop template engine, we call in $gimme
to give us what we need:

1. <div>{{ S$gimme->section->name }}</div>
2. <h2>{{ S$gimme->article->name }}</h2>
3. {{ Sgimme—>article—>subtitle }}

Note that $gimme->article->name is wrapped in two curly brackets on either side. There's
also a white space between the brackets on either side - while it's not mandatory, it's a good
practice to make the template code more readable - but there are no whitespaces in
$gimme->article->name. The template engine operates on the simple premise that it finds
two opening and closing brackets, takes out anything in between and tries to make sense of
it, replacing it with content from the database.

Once the logic is in place, the design can be changed any way you want:

1. <div class="section">{{ S$gimme->section->name }}</div>
2. <h2 class="title">{{ $gimme->article—>name }}</h2>
3. {{ S$gimme->article->subtitle }}

Or you can add even more material to control the design with CSS later:

1 <div class="wrapper">

2 <h2 class="title section{{ $gimme->section->number }}">
3. {{ $gimme->article->name }}</h2>

4 {{ $gimme->article->subtitle }}

5 <div class="section">{{ $gimme->section->name }}</div>
6 </div>

27

Note how in the <h2> tag, a class is being added here that will change its value depending
on the section the article is coming from. The interface designer can develop the look and
feel of the site without having to go back to the programmer. Instead, all that needs to be
changed is the template.

WATCH $GIMME AT WORK

On its own, $gimme can pull information out of the content database and place it inside
your template. When you set it loose inside Newscoop templates, it advances to become
the project leader of your publication; beyond simple retrievals and replacements, $gimme
is then in charge of making design decisions. Checking information with $gimme can create
the most complex designs in very few lines of code.

To put $gimme into action, you'll use functions from the Newscoop template language.
These functions are developed with the news organisation in mind, delivering publication
content with simple commands. The functions available are being expanded continuously
alongside new features in Newscoop, and an expanding range of features for already existing
functionality. A complete Newscoop template design reference is included at the end of this
Cookbook.

Now let's take a peek into an actual code snippet using $gimme. In this case you'll see a
Newscoop function alongside $gimme. The function is called list_article_authors. Everything
inside this function (it has a closing tag like in HTML) is repeated as many times as there are
authors who have worked on this article.

The following example - in plain English - would be like asking $gimme: "Could you please list
all the authors that worked on this article?"

Lets look at the code step by step and keep telling $gimme what to do.

1.
2. {{ list_article_authors }}
3. <li style="clear: left;">

For each author, we want the last name and then the first name separated by a comma.

{{ $gimme->author->last_name }},
{{ $gimme->author->first_name }}

Also show their image.

author->picture->imageurl }}" align="left" width="66px" />‘

Very important, show their full name alongside their work field (author, photographer, etc.),
followed by their e-mail and their biography.

1 {{ $gimme->author->name }} ({{ $gimme->author->type }}):
2 author->email }}">

3. {{ $gimme—>author->email }}

4 {{ $gimme->author->biography->text }}

When you are done, close this list. Thanks.

1. </1li>
2. {{ /list_article_authors }}
3.

28

You can see how $gimme makes it easy to pull up information in your templates. There is a
quite a lot happening in twelve lines of code. We are delivering a list of authors alongside
images, biography and e-mail. This will look great in the header of the article.

After this very straightforward example, we'll leap ahead into using maps inside articles
(covered in detail later in this Cookbook). The following code will list the name and geo-
location information for an article. Note that only "enabled" locations are listed, because the
journalist might still be working on the map in the administration interface. Once a location
is set to be seen by the public, it shows up using this code:

1. Location(s):

2. {{ list_article_locations }}

3. {{ 1if $gimme->location->enabled }}

4. <p>

5. {{ $gimme->location->name }}

6. {{ $gimme->location->longitude }}, {{ S$gimme->location->latitude
+}

7. </p>

8. {{ /1if }}

9. {{ /list_article_locations }}

We bet you've already started loving the power of $gimme. Besides $gimme, the Newscoop
template language includes a complete set of functions and several other powerful
capabilities that are condensed in the Newscoop Template Reference.

THERE'S MORE...

The Newscoop template language is an extension to a popular and powerful template engine
called Smarty, which itself is written in PHP. Smarty is popular among PHP users and
developers, and comes with a rich set of functionality you can use in your templates. You
will see some examples in this cookbook and find a full reference online at
http://www.smarty.net

With every new Newscoop version the template language and $gimme become more
powerful. We keep developing and integrating new features, and extending the current
ones, but we do also care about backward compatibility, which means we are not going to
break your current website.

Once you understand the power of $gimme, you will start getting a sense of the freedom it
offers you when building websites. Enjoy!

29

http://www.smarty.net

I I BEST PRACTICES FOR DESIGNING YOUR
CONTENT

Publications can have multiple types of content: editorial copy, interviews, graphics, photos,
audio and video recordings, and other digital assets. When designing pages for these types of
content, you should keep focussed on the vision and style you want to convey. The
importance of good design cannot be valued highly enough, because it creates the readers’
emotional response to your publication. This has been proven on numerous occasions
where the redesign process dramatically changed a site's traffic, even though the content
remained the same.

It will be helpful to keep the potential of the Newscoop template engine in mind when
creating your site's design. As a designer, this allows you to not think in boxes, but to think
outside the box.

In this chapter, we want to lay down some general guidelines helping you to deliver the best
structure possible for your design. This can be seen as a number of steps that a template
designer should follow, like defining the grid of the template, and designing sections and

pages based on that grid.

The diagram above shows you how to structure the design and also provide a good
experience for your readers. Please notice the white space between sections; it can provide
room to breathe, and also make clear distinctions between sections.

THE TEMPLATE GRID AND THE GOLDEN RATIO

Typical desktop and laptop computer displays have a resolution of at least 1024x768 pixels.
960 pixels is very close to the minimum limit of monitor resolution and is also divisible by 2,
3,4,5,6,8,10,12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 160, 192, 240, 320
and 480. This makes it a highly flexible base number to work with.

30

With Newscoop and with most news sites we recommend using a template that is 960
pixels wide. Fluid templates can provide more flexibility, but they defy the purpose of having
a grid. A 960-pixel-wide grid (http://960.gs/) can help you divide your design structure into
Newscoop's template elements like header, article area, sidebar and footer. This grid can
also provide enough space for photographs and videos, things most media outlets use in
great quantities.

An important part of defining the template grid is using the golden ratio
(http://en.wikipedia.org/wiki/Golden_ratio). The value of the golden ratio is 1.618, but
approximations can also be used, such as a ratio of 5:3. The golden ratio is most often found
in nature. Nautilus shells are a perfect example; the spirals get smaller and smaller in the
same proportion to each other.

Using the golden ratio can provide your readers with a clear perspective over your content.
To give you a good example of how the golden ratio can be used for template design, you
can set the content area to 600 pixels wide and the sidebar to 360 pixels wide, so that the
ratio between the content area and sidebar is pretty close to 1.6 (600 divided by 360).

Aesthetics can be measured and more importantly can be constructed, even built from the
ground up. Following a few guidelines can help you make sure you're on the right path to
having a publication that not only is compositionally balanced, but also aesthetically pleasing,
so that people can enjoy reading each article or part of the site. Designing a template grid
doesn't have to be exact math, it's more of an experimentation of ratios and white space
along with text and images.

ARTICLE DESIGN

When putting your design into HTML, you should follow web standards and the common
uses of HTML tags. This is important to make your content machine-readable, which will
enable search engines to understand your content and rank it higher.

The use of headings (HI, H2, etc.) for titles and subtitles, DT for dialogs, CITE for citations,
BLOCKQUOTE for quotations can be seen as limited, but they can provide a very clear
definition of the elements that should be designed and then styled in CSS. Usually HI is
kept for the site title, which is positioned in the header area. Remaining headings are used
for article titles and subtitles of the other parts of a story.

A good way to design the article content would be using only the inline elements mentioned
above and also paragraphs for the text, keeping block tags like DIV only for the presentation
layer. You'll find more information on the use of tags and their importance in the chapter
titled Search Engine Optimisation (SEO).

The template grid defines what goes inside an article and what goes outside of it. The same
conventions established for the site's design can also be used for article design; don't try to
reinvent the wheel. The ratios, subdivisions and modularizations should be the same across
the entire site.

COMMENTS DESIGN

Comments are not only the feedback received for a news story, but also the conversation
of the community behind your site. When you design a comments structure you should
take into account that people are not only communicating their ideas about the article, but
also communicating with each other. Threaded comments reflect this dialogue very well.
Adding profile pictures so that each reader has his/her own picture shown next to the
comment is also a good idea.

31

http://960.gs/
http://en.wikipedia.org/wiki/Golden_ratio

When designing comments and comment forms, you do not have to follow and modify
existing HTML structures. Because of Newscoop's advanced templating system, comment
submission forms can be designed and styled completely using HTML and CSS.

There's a particular chapter in this manual titled Profile pictures: Gravatar, Facebook, Twitter
where you can find more details about how users can set up profile pictures and display
their pictures along with their comments.

DESIGNING THE OTHER PARTS OF A NEWSCOOP SITE

Newscoop's header area is the part where the masthead and the main navigation take place.
The masthead is your publication's logo or title. It should be the first thing your reader sees.
It must be legible, tell people about your publication's intent and convey what they can
expect. It's important to remember that while you may have looked at your own
publication thousands of times, your readers may have not.

Archive design must have a clear structure, so the reader can quickly identify the article
they are looking for. Usually it is shown in reverse chronological order, grouped by years,
months or weeks. In Newscoop you can also use calendars to design your archives. More
about this can be found in the chapter Calendars with jQuery.

A well-designed search results page can provide readers with a pleasant experience, so they
won't be afraid to look for articles published in the past. This manual also has a chapter
titled Search Templates, where you can find more information on getting the most out of
search results pages. Don't forget that your search results page should display not only the
article's name, but also small pieces of supporting information about the articles (developers
like to call this "metadata"), like the date it was published, the author's name and the topics
assigned to the article.

There's more information about the structure of other parts of Newscoop sites in the
chapter Understanding Templates, HTML & CSS.

TYPOGRAPHY

Newscoop allows total control over font usage; you can even embed font faces using CSS3.
Actually, one of the important parts of the design is not the choice of a single font, but all of
the site's typography as a whole.

A principal part of typography is setting the line height. As mentioned before, line height is a
good place to make use of the golden ratio. A value of 1.6 em should work just fine, but the
recommended value is |.5 em for the kinds of content mentioned in the beginning of this
chapter.

An example of good typography for web design is to set the font size to |3 pixels and the
line height to 21 pixels. The ratio between line height and font size is very close to the
golden ratio.

Using too many font faces might have major impact on the professionalism a publication
conveys. Displaying fewer font faces might be less confusing for the reader. Consider using
one font face for titles and a different one for article content.

<link href="http://fonts.googleapis.com/css?family=Droid+Sans" rel="stylesheet"
type="text/css" />

32

The above line of code is an example of how to use Google Web Fonts for embedding new
font faces in your design. There are several services that can provide this functionality; some
are paid services like TypeKit, and some are available for free like Google Web Fonts. These
services take care of providing the right font format for each browser. Some browsers are
using standard font formats like OTF or WOFF (Web Open Font Format), while many
mobile browsers use technologies like SVG for displaying font faces.

33

|2 PREPARING DESIGNS FOR TEMPLATES

One way to design for Newscoop templates involves slicing a static mock-up of your
publication into multiple images. A graphics application such as GIMP or Adobe Photoshop
can be used for this task. The resulting images can then be re-created using HTML and CSS.
The main advantage of slicing up and re-creating the design is that it reduces the bandwidth
load for your site, which means increases in your readership will scale better, and your
readers will get the pages faster. For instance, design elements such as horizontal rules and
colored backgrounds can be styled using CSS, and therefore do not need to be served as
image files.

Let's look at the sample Template Package "The Journal".

April 20, 2011 Register | Sign in:|_username login) subscribe RSS Feed

Highlights >

10 amazing
geolocation apps

* Commercial space
flight becomes a
reality

Car industry
resurgence boosts

] ™ cconomy
MoRE +

voRE + VoRE +

Recent Entries
(¢} tb 4] LUXURY *ONLINE ADVERTISERS

Ourn HEALTH SECURITY TARGET
BREAKS ON RISKS ONLINE
e T Gowtheantis | OFFER EXPOSED DEMOGRAPHIC
o seemoreentries
BDd o oo soreon neum avemanen s °
% Eul‘opean * Wintry conditions
p sweep across China
Council

candidates set
to be named

Taxand trade bureau
considers alcohol
labeling

BRUSSELS - Italian and Greek
candidates nominated for President
of the European Council in secret
ballot.

New Cannes winner a
taste of paradise

Gotothe tosee more entries

Romische

Front page of the sample Template Package "The Journal".

Before you begin the slicing process, you need to identify the main structural elements of
the design, so that you know how to arrange and structure your HTML files. Dividing the
design should follow the grid established in the previous chapter. The main divisions should
end up being <div> tags. A <div> is a block containing images and text that can be
positioned using CSS.

An important thing to remember when creating HTML files is that you should use IDs for
<div> tags that are present only once in your site pages (e.g. navigation, sidebar, footer, etc.).
You should use classes for <div> tags that are repeated more than once on the same page
(e.g. links, pages, etc.)

34

DIVIDING THE FRONT PAGE TEMPLATE
The diagram below shows how the design for "The Journal" front page template is divided:

TOP-LOGIN.TPL
Itk lighra

TOP-SEARCH-BOX.TPL

* European
Council
candidates set

to be named
S- It

[T —

[—————

e FRONT-THREE-
FRONT-TOP-STORY.TPL @i FRONT-TABSTPL | CATEGORIESTPL

Allso in this site...

About This Site

FRONT-BOTTOM- 8 FRONT-BOTTOM- FRONT-BOTTOM-
ABOUTTPL META.TPL POLL.TPL

FOOTERTPL

Your HTML files will end up being .tpl files, which are Newscoop template files. For "The
Journal", the front page template front.tpl is a skeleton which includes and positions the
following sub-templates:

e _html-head.tpl This is not visible in the diagram above, but it is an important
template used on all site pages. It defines the 'head' tag section of HTML pages.

o top.tpl Includes all templates with prefix 'top', and creates remaining elements of the
header section of the page (date, RSS link, logo). This template is repeated on all site

pages.

35

top-login.tpl Template used to generate the login form and register link. If a reader
is logged in, it makes links to the reader's account page and to logout.
top-highlights.tpl Lists the three newest articles with the switch 'highlight' switched
on.

top-recent-entries.tpl Lists the three last published news articles.
top-search-box.tpl Generates the search form.

top-nav.tpl Used for site-wide navigation.

front-top-story.tpl Displays just the newest article with the switch 'On front page
is on'.

front-tabs.tpl Makes tabs with most-read and most-commented articles, and then
lists the actual articles.

front-three-categories.tpl Lists three articles (regardless of section) which have
the switch 'On section page is on'.

front-also-categories.tpl Makes a horizontally-scrollable list of |2 articles that
don't have any special switch on.

front-bottom-about.tpl Template with hard-coded 'About this site' content.
front-bottom-meta.tpl Makes hard-coded links to important pages that are used
for Newscoop administration, such as the administrator login.
front-bottom-poll.tpl Displays the latest defined poll.

footer.tpl This is the part of every page that contains links to 'about’ pages and legal
information.

DIVIDING THE ARTICLE AND SECTION TEMPLATES

The diagram below shows how article and section page designs can be divided into sub-
templates. The top.tpl and footer.tpl sub-templates are re-used from the front page
design, but in between these are different sub-templates. Some of these sub-templates may
have been created for just one specific purpose, while others will be re-used again and

again.

[Food export duties set to rise D
Lo inpoiica] be named

ArTicLE-conTTPL i

an Council candidates set to

* Wintry conditions sweep across
[China

Food export duties set to rise

Hva3als

4 TI0H9078

¢ BovB

ARTICLE-COMMENTSTPL

Idr'saovd
-uvaaais
-avaaars

g
wonrcnmm

4L TIOH9078

36

FOOTERTPL

I 3 ORGANISING TEMPLATE FILES

Every template package available for download from Sourcefabric has three main templates:

e Front page
e Section page
e Article page

These are called - no surprise here - front.tpl, section.tpl and article.tpl.

You could run a publication with these three templates and nothing else. But to make the
most of the template engine's power, you should divide up your templates further, creating
sub-templates which can be easily reused and edited.

There are some parts of pages which are identical, regardless of the section or the article.
This is usually the case for the header, navigation and footer, for example. But it could also
be an image stream from flickr, a Twitter feed, a 'Like' button from Facebook, or a similar
icon for sharing content from a third party provider.

You don't have to duplicate this part of the template. In fact, it's even better to hand off
these functions to sub-templates. Then when you apply a change to the sub-template, it will
show up across your entire site.

You can take out sub-templates, place them in a subfolder and call them with an include, like
this:

{{ include file="set_thejournal/_tpl/article-comments.tpl" }}

As you can see in this example, the path to the template which is being included needs to
be named. Planning your templates' folder structure carefully will save you time later,
especially when you run more than one publication on Newscoop and have several
different designs in action.

We encourage you to follow the folder structure described below. It's not set in stone; you
can structure your templates and folders however you prefer, but the Newscoop
community has agreed on this structure after years of working with templates. We consider
it to be best practice. Also, the template packs Sourcefabric provides all feature this
structure. If you use the same logic it will be easier to use examples or copy sub-templates
from one template package to another. Read on to find out what we recommend when it
comes to naming templates and placing them in your file system.

TEMPLATE NAMING

Besides the main templates (front.tpl, section.tpl, article.tpl) you will probably have many
sub-templates to run your publication. Depending on whether they're common across
multiple pages, or unique to a page, you may follow these rules. But you don't have to,
because Newscoop doesn't have reserved names for specific templates; it's really up to you
to create your environment the way you like.

I. _html-head.tpl is the template we provide for all links, meta tags and information
globally needed for your publication, like jQuery, webfonts, CSS files and universal
JavaScript.

37

. Unique code for sections or articles can be called from _html-head.tpl using {{ if

$gimme->template->name == "path/to/article.tpl" }} or with other IF conditions like
switches, topics or keywords. Such additional includes could be slideshows or special
CSS files. For quick development, having one template (for example _html-head.tpl)
saves you lot of time when you have to introduce some changes, and keeps things
consistent. You can always chop it up later.

. Includes that are used on more/all pages can have short names, like header.tpl, main-

nav.tpl, footer.tpl
p P

. Included templates that are specific for a single page (or a few pages from the same

context) can have a prefix, like article-sidebar.tpl or front-top-story.tpl. This way you
will have templates for article page grouped together in the template file listing. The
same goes for archive, front page, search and so on.

. Special templates that are not directly used to output content on the web page but

to define context (for example the _html-head.tpl which defines the HEAD section
of web pages, or some RSS or sitemap generators) can have the ' ' (underscore) sign
as the first character; this way, all such templates are grouped together on the top of
the template listing page.

FOLDER STRUCTURE

Your templates will always be inside the filesystem path:

/path/to/documentroot/templates/

These files are accessible through the template editor of the Newscoop administration
interface. Inside this folder you can add sub-folders. We recommend the following
structure:

- set_setname

- _tpl folder with gnippets which are called via include
B
. header.tpl, footer.tpl, comments.tpl, ...
- JI‘I‘IQ images which are independent from the CSS
- il -3 Jav pt files
- _Css main folder for CSS files
- skinname CSS gking for your design

- _misc other files (e.g. flash players, banners, etc.)
B
. front.tpl, article.tpl, archive.tpl, ...

Here's some practical advice on how to make your life easier with a clean and functional
folder structure:

38

|. templates/set_name/
Replace "name" with the name of your template package. For example, we are using
"set_thejournal" for the template package "The Journal". The main templates are
placed inside this folder, like front.tpl, section.tpl, article.tpl or universally used
templates like search.tpl, archive.tpl, gallery.tpl etc. The include path is:
{{include file="set_thejournal/gallery.tpl" }}

2. templates/set_name/_tpl/
All your sub-templates are collected inside this sub-folder. In our experience it isn't
necessary to divide this into further sub-folders. Instead you should use the name of
sub-templates for further clustering, like article-comments.tpl, article-author.tpl, etc.
The include path is:
{{ include file="set_thejournal/_tpl/article-comments.tpl" }}

3. templates/set_name/_img/
If you need images on the file system for your publication, place them here. The
source path is:
publication->site }}/templates/set_name/_img/logo.png"
/>

4. templates/set_name/_js/
Place all the JavaScript files you need in this folder. They are included like this in the
header:
<script type="text/javascript" src="http://{{ $gimme->publication->site
}}/templates/set_thejournal/_js/tabs.js"></script>

5. templates/set_name/_css/
You can place universal CSS files into this folder, things like grid, or font sizes.
Alternatively you can use a subfolder (see next point). These CSS files are included
like this:
<link href="http:/{{ $gimme->publication->site
}}templates/set_thejournal/_css/default.css" rel="stylesheet" type="

6. templates/set_name/_css/skinname/
For the CSS files, we decided to introduce a subfolder, which is best being described
as a skin. For example, the CSS in this folder could change the colour of your site, in
which case you might have folders like "red", "blue" and "morning mist" in here. You
call these files with:
<link href="http:/{{ $gimme->publication->site
}}templates/set_thejournal/_css/green/green-skin.css" rel="stylesheet"
type="text/css" />

7. templates/set_name/_misc/
Use this folder for additional code, like a Flash Player which is being embedded in
your templates. The URL path is:
http:/{{ $gimme->publication->site }}/templates/set_thejournal/_misc/
If you need the folder path it would be:
/path_to_document_root/templates/set_thejournal/_misc/

text/css" />

If you check out our template packages you will see that beyond this strict structure, we

actually get a bit looser and let our hair down. For example, you'll find image folders inside
the CSS folders, providing background images. A good rule of thumb would be keep your
ship in order for as long as you can. Then get flexible and sail with the wind.

39

I 4 TIPS AND TRICKS FOR THE TEMPLATE
NOVICE

This chapter is a collection of snippets offering a quick overview of the inclusion of files,
modification of strings, working with date and time, and managing line breaks. The following
chapters will bring these snippets to life. For more modifications, you can consult the
http://www.smarty.net documentation.

INCLUDING FILES

Templates and sub-templates are included using the template path starting inside the
templates folder:

{{ include file="set_thejournal/_tpl/article-comments.tpl" }}

DATE AND TIME

For full date and time formatting options, see the template reference at the end of this
manual.

Print current time (e.g. format: 25 April 2011, 16:20:45)
{{$smarty.now|camp_date_format:"%e %M %Y, $H:%1i:%S"}}

Print date and time of publication of an article

{{ Sgimme->article->publish_date|camp_date_format:"%e %M %Y, %$H:%1:%S" }}

MODIFYING STRINGS

Stripping tags from WYSIWYG content

{{ $gimme->article->intro|strip_tags }}

Truncate string to specific length

{{ $gimme->article->intro|truncate:70 }}

Escaping HTML and stripping tags (e.g. for meta description)
{{ $gimme->article->intro|strip_tags|escape: 'html' }}

Upper and lower case

{{ Sgimme->article->name |upper }}
{{ Sgimme->article->name|lower }}

Replacing and chopping strings
Replacing parts of the string (example: whitespace into underscore)

{{ $Sgimme->article->name|replace:' ':'_' }}

40

http://www.smarty.net

You can also use a regular expression with regex replace

{{ Sgimme->browser->moz_data.2|regex_replace:"/\./":"-" }}

[regex_replace:"/\./":"-" replaces all dots with dashes. This can be useful in JavaScript
elements. The following line uses regex_replace to replace fancy quotes like » «
” and so on with "

{{$gimme->article->name|regex_replace:'/&(.*?)quo;/"':"'" '}}
Trim a string (chop off whitespace at the beginning and end)

{{ $gimme->article->seo_title|trim }}

COUNTING AND STATISTICS

Counting characters, words, sentences and paragraphs:

Headline "{{ S$gimme->article->name }}" has

{{ S$gimme->article->name|count_characters }} characters and

{{ $gimme->article->name|count_words }} words.

The full article has

{{ Sgimme->article->full_text|count_sentences }} sentences and

{{ $gimme->article->full_text|count_paragraphs }} paragraphs.

USEFUL CONDITIONS

Checking if variable is empty

{{ if Sgimme->article->seo_title|strip_tags|trim !== "" }

Using the if condition with these string modifiers makes sure that no HTML tags or
whitespace is in the field.

AVOIDING LINE BREAKS

Anything within {{strip}} {{/strip}} tags is stripped of extra spaces or carriage returns at the
beginnings and ends of the lines before they are displayed. Let's say you had a publication
where the value of the seo _title field often contained leading spaces, sometimes editors
even get HTML tags into the field:

Newscoop Rocks!

The following example will output a single line starting and ending with quotes, but without
leading spaces, like "STARTNewscoop Rocks!END". Any HTML code will be stripped out.

"{{ strip }}START

{{ if Steststring|strip_tags|trim !== "" }}
{{ Steststring|strip_tags|trim }}

{{ /if }}END

{{ /strip }}1"

If you want to keep whitespace between elements, use a workaround with:

{{ textformat wrap=200 }}

This will turn everything into a single line with a space between each element, and applying a
line break every 200 characters. Adjust the value of 200 to meet your needs. The example
below will list various values in one line inside the body tag:

41

42

<body class="{{ textformat wrap=200 }}
{{ Sgimme->browser->browser_working }}
{{ S$gimme->browser->ua_type }}

{{ Sgimme->browser }}

{{ /textformat }}" >

I 5 INSTALLING TEMPLATE PACKS

If you want to see a final result of the process of chopping up a design, the easiest way is to
download one of the template packs for Newscoop from Sourcefabric. Each template pack
contains a complete sample publication with all the templates that publication requires. You
can then change the sample publication to meet your needs. On the Sourcefabric website
you can find packs providing all elements of a publication: database structure, sample
content and the actual templates:

http://www.sourcefabric.org/en/products/newscoop_templates/

These template packs are provided in the form of Newscoop backup files.

DASHEOARD CONTENT ACTIONS CONFIGURE USERS PLUGINS

Add new article
Upload new template
Dashboard Add new publi

Add new staff member

Add more widgets Add new subscriber
Add new user type
Your Articles
Add new article type
Add new country
Showing 1 to 17 of 17 entrig
Add new language
Change your password
. On Front
¢ Name Import XML Status Page
Minsk SIETEIEE S Published No N
Toronto (Duplicate) map_single New Mo M

Warning: if you already have one or more publications on your Newscoop server,
uploading a template pack will erase your entire database and files from all your publications,
and replace them with sample content! Do not attempt this procedure on a production
Newscoop server unless you have backed it up first!

Using the Backup/Restore feature of Newscoop, you can install a template pack after
downloading it from the Sourcefabric website to your local computer's desktop. Then log in
to the Newscoop administration interface, and select Backup/Restore from the Actions
menu.

On the Backup/Restore page, click the Upload backup file link, and click the Browse
button to select the template pack from your local computer. Then click the Save button
to upload the file. After upload, click the Restore icon for the template pack, on the right
side of the list of the available backup files. This orange and white icon looks like a life
preserver, of the kind you might find on a boat.

43

Backup/Reslore

Free disk space: 143303 Mb ' Make new backup L1

Browse... Save
File Craation date Size,Mb Download Restors Delete
ushaidicooker backup newscoop 2011.08.31-17-14-07 tar gz 2011-Apil-D1 19:33:28 5 = 2 %]
ushahidi-cooker-sample-sie-3.5 x tar gz 2011-Apni-04 11:23:08 & H :: N
the-oumal-newsenop-samale-ste-3 5w ar gz 2011-Aprl-07 13:79:48 26 H . %]
bachup newscoop-2011-03.26.09.19.59 kar gz 2011-March-26 08:32:20 5 (=] e %]

The restore process starts with an empty pop-up window, connecting to the server. Do
not close this window, otherwise the restore process will be interrupted. The process takes
some time (it can be minutes, depending on the size of the publication and speed of the
server). It will finish with an alert window where you have to click "Resend".

After the restore process has finished, there is only one user in the system, the
Administrator, with the login and password: admin

To finish the process, log in using admin as login and password. Then go to Content >
Publications and select "Configure" in the new publication. Now you have to add the URL of

your publication as a site alias. The template pack should now be visible at the URL of your
publication.

44

MAKING YOUR TEMPLATES

1 6. PUBLICATION

17. ISSUES

18. SECTIONS

19. ARTICLES

20. ARTICLE COMMENTS

21. SITES IN MULTIPLE LANGUAGES
22, SEARCH TEMPLATES

23. MAKING A 404 PAGE TEMPLATE

45

I 6 PUBLICATION

Newscoop content is organized in a hierarchical structure which conforms to the tradition
of newspapers and magazines: publications, issues, sections and articles. Each publication is
made up of issues, each issue is in turn made up of sections, which are comprised of
articles.

In this chapter we'll look at how publication settings can be set in the admin interface and
then accessed by $gimme->publication and its variants.

General attributes

Mame: | The Prague Times

Default Site Alias: | www.example.com

Default language: |Ceskjr j| Edit languages

Article title
Search engine optimization: Article keywords
L] Article topics

Invalid URL Template: | classiciplisearch-box.tpl ~|
Comments
Comments enabled?:
Article comments default to enabled?:
Subscriber comments moderated?: O
Public allowed to comment?:
Public comments moderated?:
Use CAPTCHA to prevent spam?:
Moderator Address: editor@example.com
From Address: robot@example.com

=

Configure Publication view for general attributes and comments in the administration interface

46

You can set a range of parameters in the configuration when creating or editing a publication
in the administration interface. This chapter will explain only those parameters related to
the $gimme->publication object through the template language.

Each publication has an attributes menu (accessible in the administration interface under
Content->Publication and then by clicking on the wrench-and-screwdriver icon for
configure).

There are three sections in the publication attributes menu for each publication:

o General attributes and Comments on the left side of the menu
e Subscription defaults on the right side of the menu

GENERAL ATTRIBUTES

The fields in the general attributes section present in $gimme->publication are listed below:

Name of the publication (e.g. "The Journal")

{{ $Sgimme->publication->name }}

Default Site Alias is the name of the web server on which your publication will be hosted
(e.g. www.example.com). Newscoop enables multiple publications to be hosted on the same
web server, provided that a unique alias has been set up for each publication by your
system administrator. If you try to access the alias URL before this setting is made, you will
see an error message indicating that the alias was not yet assigned to a publication.

{{ $gimme—>publication->site }}

Here is an example using $gimme->publication->site taken from The Journal's _tpl/_html-
head.tpl:

1. <script type="text/javascript">

2. var tb_pathToImage = 'http://{{ $gimme->publication->site }}/templates/se
t_thejournal/_img/loadingAnimation.gif';

3. </script>

4. <script type="text/javascript" src="http://{{ S$gimme->publication->site }
}/templates/set_thejournal/_js/tabs.js"></script>

5. <script type="text/javascript" src="http://{{ $gimme->publication->site }
}/templates/set_thejournal/_js/scripts.js"></script>

6. <script type="text/javascript" src="http://{{ $gimme->publication->site }
}/templates/set_thejournal/_js/easing.js"></script>

7. <link rel="index" title="The Journal" href="http://{{ $Sgimme->publication
->site }}">

$gimme->publication->default_language returns information related to the publication's
default language. Here are a few examples:

1.

2. name: {{ $gimme->publication->default_language->name }}

3. is the language name</1li>

4, number: {{ $gimme->publication->default_language->number }}

5. is language identifier in the Newscoop database (integer value)</
1i>

6. english_name: {{ $gimme->publication->default_language->english_n
ame }}

7. is language name in English</1i>

8. code: {{ $gimme->publication->default_language->code }}

9. is language international code</1li>

10. defined: {{ if S$gimme->publication->default_language->defined }}S
ET{{ else }}NOT SET{{ /if }}

47

11. is boolean value (true/false) - true if the language was set in t
he current environment; false otherwise</1li>
12.

A full reference to all properties of the template objects is given at the end of this book. The
examples covered here might not cover all possibilities.

COMMENTS

The fields in the Comments section in the screenshot above are accessible through
$gimme->publication as follows:

Public allowed to comment? Check this box if non-subscribers will be allowed to make
comments on articles

{{ if S$gimme->publication->public_comments }}YES{{ /if }}

Public comments moderated? If you check this box, non-subscriber comments will be
hidden from readers until they have been reviewed by a staff member

{{ if $gimme->publication->captcha_enabled }}CAPTCHA{{ /if }}

You can see some of these examples in action in the advanced section of this Cookbook.

SUBSCRIPTION DEFAULTS

The rest of the fields are related to subscriptions, which you can adjust later if you wish.
First, you have to select a time unit for your subscriptions; which could be days, months,
weeks or years.

Subscription defaults

Time Unit:

Paid subscriptions
Currency: | USD
Time unit cost per one section:

- one language: | 1.00
- all languages: | 2.00
Default time period: |1 time units

Trial subscriptions

Default time period: |1 time units

Configure Subscription default view in the administration interface

48

You can set two types of subscriptions: paid and trial. Paid subscriptions have the following
properties:

e Currency: the subscription currency. Even if a subscription request is sent and the

currency setting is changed before payment, the information about the subscriber's
payment due is correctly recorded

e Time unit cost per one section:

o for one language: the price for access to a particular section in a single language
o for all languages: the price for access to a section in all available languages

® Default time period: the usual duration of the paid subscription. This value is used

when a reader subscribes through the website. The period for a particular
subscription can be modified from the administration interface

Here is some sample code for subscriptions:

5N}

w 3 o U

10.

<h3>Subscriptions</h3>

<1li>Trial subscription: {{ $gimme->publication->subscription_trial_ti
me }} {{ $gimme->publication->subscription_time_unit }}</1i>

Paid subscription: {{ $gimme->publication->subscription_paid_time

}} {{ $gimme->publication->subscription_time_unit }}</1i>

<h4>Subscription costs:</h4>

{{ $gimme->publication->subscription_currency }} {{ S$gimme->publi
cation->subscription_unit_cost }} (access one language)

<1li>{{ $gimme->publication->subscription_currency }} {{ $gimme->publi
cation->subscription_unit_cost_all_lang }} (access all languages)

Controlling access based on subscriptions is described in the chapter titled "Subscriptions,
Registration and Content Access."

49

I 7 ISSUES

If you've worked on a periodical publication (meaning that it's regularly published on a daily,
weekly, monthly or quarterly schedule), you're familiar with the concept of issues. If you
come from a blogging background, you're probably used to an unstructured process of
publishing your articles. Often blogging systems will create arbitrary issues in your archive
by clustering articles, for example in months.

In this chapter we'll look at how Newscoop works with issues, and how each issue's
characteristics such as name, publish date and URL can be accessed in the template
language.

In Newscoop, each issue can have a separate template assigned to it, meaning that you can
have a different layout for different seasons, events or even different layouts for |-, 2- or 3-
column headlines (especially useful for breaking news coverage or slow news days). You can
also translate individual issues. And, from the administration interface, you set automated
publishing for an entire issue.

From the Newscoop administration interface for The Journal, you can access the issue
details menu by going to Content->The Journal and then clicking on the wrench-and-
screwdriver Configure icon.

Here is an example template that returns a number of attributes for a given issue:

1. <h3>Issue No.{{ S$gimme->issue->number }}: {{ S$gimme->issue->name }}</h3>
2.
3. Published: {{ $gimme->issue->publish_date|camp_date format:"%e. %

M $Y" }}</1li>

4. <1i>Using template: {{ S$gimme->issue->template->name }}</1i>

5. Inside publication: {{ S$gimme->issue->publication->name }}</1i>

6. <1i>URL name: .../{{ $gimme->issue->url_name }}/</1i>

7. Latest issue? {{ if S$gimme->issue->is_current }}yes{{ else }}no{{
Jif }}</1li>

8.

For "The Journal," this displays something like this:
Issue No.I3: January 2011

Published: |. January 2011

Using template: set_thejournal/front.tpl
Inside publication: The Journal

URL name: .../jan201 1/

Latest issue? yes

A full reference of properties for the object $gimme->issue can be found at the end of this
manual.

Using 'set' and 'unset' to change values for an issue

In the templates you can also change the values for a given issue. In the following example
this is done to include static pages from the first issue (example taken from _tpl/footer.tpl of
"The Journal"):

1. {{ set_issue number="1" }}
2. {{ set_section number="5" }}

50

3. {{ list_articles }}

4. <li class="page_item"><a href="{{ uri options="article" }}" title="{{
$Sgimme->article->name }}">{{ S$gimme->article->name }}</1li>

5. {{ /list_articles }}

You can set the issue name and the issue number. You can reverse the issue to the default
value (the value for the default runtime environment of the displayed page):

|{ { set_default_issue }}

You can also set the issue to the last published issue:

| {{ set_current_issue }}

If you want to drop the information you have set, you can use:

| {{ unset_issue }}

Unsetting an issue does not lose the issue value forever. It can be set with the above
commands to default, current or an assigned value.

51

I 8 SECTIONS

Sections are distinct clusters of articles. You will have seen sections in most print
publications: Culture, Business, Sports, International Affairs, and so on. Usually these
sections are visible in the publication's navigation; below you can see an example for the
sample publication "The Journal". In this case, the section POLITICS is active, either because
the reader is looking at the content of this section, or is reading an article inside the section:

° th e Recent Entries L

ourn BREAR

Gobthearhivs | OFFER

tnseemoreentnes

HOME [zelRpilei-ly BUSINESS SCIHTECH HEALTH ENTERTAINMENT SPORTS

Sections can be translated, and sections also have a description which can be added in the
administration interface. The Newscoop developers are currently working on access levels
for editors and journalists along section lines, meaning that you can assign your staff to
sections and they are only allowed to work inside that section.

Here you can see the $gimme->section object in action:

1. <h3>Section No.{{ S$gimme->section->number }}: {{ S$gimme->section->name }}
</h3>

2. {{ Sgimme->section->description }}

3.

4, Published: {{ $gimme->section->publish_date|camp_date_format:"%e.

M SY" }}</1li>

5. <1i>Using template: {{ $gimme->section->template—>name }}</1i>

6. Inside: {{ S$gimme->section->publication->name }}/{{ $gimme->secti
on->issue->name }}</1i>

7. <1i>URL name: .../{{ $gimme->section->url_name }}/</1i>

8.

This displays something along these lines, depending on where you are, in "The Journal":
Section No0.40: Health
All the things that do you good.

Published: 20. April 201 |

Using template: set_thejournal/section.tpl
Inside: The Journal/January 201 |

URL name: ../health/

Note: A section's publishing date is the same as the publishing date of the issue.

USING $GIMME->SECTION IN THE NAVIGATION TEMPLATE

In your navigation, you can use $gimme->section to check which element of the navigation
needs to be active, because this is the section the reader is in (example taken from_tpl/top-
nav.tpl of "The Journal"):

52

1. {{ list_sections }}

2. <li class="cat-item{{ if $gimme->section->number ==

3. Sgimme->default_section->number }} current_page_item{{ /if }}">

4. <a href="{{ uri options="section" }}" title="View all posts filed
under {{ $gimme->section->name }}">{{ $gimme->section->name }}

5. </1li>

6. {{ /list_sections }}

{{ if $gimme->section->number == $gimme->default_section->number }} checks if the
section number provided by the list function is identical with the one of the page. If this is
the case, an additional class is added. This class is then used in the CSS to style this element.

LISTING SECTIONS

In the above example, list_sections was already introduced. The list commands (for issues,
sections, articles, languages, comments and others) can be tuned in many ways. A full
reference can be found at the end of this manual.

Lists are usually not so elaborate when used on sections. You'll find more interesting
examples in the chapter on articles. For sections, ordering is probably the most commonly
used feature. Here are some examples; ordering by number (ascending):

1. {{ list_sections order="bynumber asc" }}
2. {{ Sgimme—>section—>number }}. {{ S$gimme—>section—>name }}
3. {{ /list_sections }}

..or ordering by number (descending):

1. {{ list_sections order="bynumber desc" }}
2. {{ Sgimme->section->number }}. {{ $gimme->section->name }}
3. {{ /list_sections }}

This returns the section numbers in ascending or descending order, and also lists their
names.

SETTING AND UNSETTING SECTION

You can also change the section's values in the templates. In the following example this is
done to access the static pages in section number 5 of the first issue (the example is taken
from _tpl/footer.tpl of "The Journal" sample publication):

1 {{ set_issue number="1" }}

2 {{ set_section number="5" }}

3. {{ list_articles }}

4 <1li class="page_item"><a href="{{ uri options="article" }}" title="{{
$Sgimme->article->name }}">{{ S$gimme->article->name }}</1li>

5. {{ /list_articles }}

You can set the section name and the section number. You can reverse the section to the
default value (the value for the default runtime environment of the displayed page):

|{{ set_default_section }}

If you want to drop the information, you can use:

|({ unset_section }}

Unsetting a section does not lose the section information forever, it can be set with the
above commands back to default, or an assigned value.

53

I 9 ARTICLES

In this chapter you will learn how to display elements of an article, as well as building article
lists. Among all templates, article.tpl is generally the one where most template functions
are called, and many sub-templates are included. No surprise, since a lot of things usually
show up in an article page:

title

authors

publish date

intro

full text

attachments

comments

map

the list of other articles from the same section

L]
[]
[]
L]
L]
L]
[]
[]
L]
o .

Each article has an Article Type, which has a list of fields you set up to reflect the content
(like "intro", "twitter", "full_text", "seo _title" and so on). Some of the elements in the list
above refer to fields defined in the Article Type, like title, intro or full text. Others are
objects related to an article, like attachments, maps or comments. There can also be
references to objects independent from the article, which are linked to the article in the

Article Edit screen of the administration interface, like authors.

You are advised to use the {{ include }} feature of the template engine to manage all possible
shapes and forms an article can take. Chop your article template into sub-templates and call
them in when and where you need them. As we already described in a previous chapter on
cutting a HTML page into templates, it is much easier to divide a template into pieces and
use includes.

You can take a look at the example article.tpl in the template pack "The Journal".

Best practice is to separate the main article content from the other auxiliary parts. That's
why we have different template includes like:

{ include file="set_thejournal/_tpl/article-cont.tpl" }}

{ include file="set_thejournal/_tpl/article-comments.tpl" }}
{ include file="set_thejournal/_tpl/article-map.tpl" }}

{ include file="set_thejournal/_tpl/sidebar-related.tpl" }}

Let's take a look at what is going on inside the _tpl/article-cont.tpl file:

54

Food export duties set to rise Map

Map:
Politics -

Moscow Center
James Q. Reporter Sarah Staffwriter

Show initial Map

Pro ne fabulas quaestio, sit ridens
consectetuer et, te has dicunt ornatus
minimum. Ius elit ornatus an. Has in dictas

e g Moskva
noluisse insolens, has cu postea sensibus e
(M=) g

adipiscing, possim efficiantur vel eu. - sy
Usu audire vulputate referrentur ex. Cu
duo viderer explicari, ad eos augue
nominati. An nam democritum inciderint.
Ea copiosae mandamus duo, mei no quis
inciderint. At legimus maiorum omnesque
eos, ut vim nihil antiopam, sit civibus delectus ei. Causae maluisset scripserit pro in,
inaltera fastidii quo.

Movet affert id eum, at etiam primis corrumpit vel. An assum nusquam intellegam
eum, eripuit epicuri in has, usu in nostrum euripidis contentiones. In quo reque
quando ornatus, in est splendide elaboraret mediocritatem, quod suscipiantur duo in.
Vim ex inermis fuisset, an sea tollit timeam dignissim. European Council candidates set to be

* Wintry conditions sweep across China

Design delivered by template _tpl/article-cont.tpl

The article title is the most important thing in the Article. It should use either the <h > or

<h2> heading tag (depending on how you decided to mark up your publication name; see

more on these issues in the chapter on Search Engine Optimisation):

<h2>{{ $gimme->article->name }}</h2>

You can refer to the publish date and the section where the article came from. Article
authors, photographers and other contributors are being mentioned next.

1. Published on {{ $gimme->article->publish_date|camp_date_format:"%e %M $Y"
}}

2. in {{ $gimme->section->name }}

3.

4. By: {{ list_article_authors }}

5. {{ $gimme->author->name }} ({{ $gimme->author->type|lower }})

6. {{ 1f !$gimme->current_list->at_end }}, {{ /if }}

7. {{ /list_article_authors }}

Do you map and display locations? Great! Here is how to display them on the page:

1. Location(s): {{ list_article_locations }}

2. {{ 1if $gimme->location->enabled }}{{ $gimme->location->name
}}

3. {{ if $gimme->current_list->at_end }}{{ else }}, {{ /if }}

4. {{ /if }}

5. {{ /list_article_locations }}

Now let's start the story. In the following code snippet we will display the introduction

from the article, using the Article Field intro. We are also checking if the image with the

number | is present and present it accordingly. The last line lists the rest of the story,
stored in the Article Field full_text.

alt="{{$gimme->article->imagel->description}}" />{{/if}}
2. <div class="intro">{{ $gimme->article->intro }}</div>
3. <div class="full_text">{{ $gimme->article->full_text }}</div>

1. {{if Sgimme->article->has_image (1) }}<img src="{{url options="image 1"}}"

Not that difficult, is it? If you are still with us, go an extra round and check if the content is

actually available to the reader, with $gimme->article->content_accessible. If the value

returned is TRUE, either the article is available to everybody or the reader is logged in and

has the right to access the article. You can find more on subscription management in the

section of this Cookbook on Advanced templating.

55

2. {{if $gimme->article->has_image (1) }}<img src="{{url options="image 1"}}
alt="{{Sgimme->article->imagel->description}}" />{{/if}}

3. <div class="intro">{{ S$gimme->article->intro }}</div>

4. <div class="full_text">{{ $gimme->article->full_text }}</div>

5. {{ else }}

6. <p>This article is accessible only to registered and logged in users!</
P>

7. {{ /if }}

As you can see, the article-cont.tpl sub-template is mostly about the article content itself.
The rest are auxiliary, but very important parts. They are also included in the article.tpl
template.

ARTICLE COMMENTS

Comments are explained in more detail in the following chapter. We believe that they are
an essential way to communicate with your audience - and for your audience to
communicate among themselves. In "The Journal" template pack, comments look like this:

2 Response(s) to "New horizons for fhe rowser”

‘Winnetou 4.01.2011 at 15:44

Hi, cu mel quot instructior, cu has consul delenit senserit, Other than that - perfect!

Swen 30.12.2010 af 13126

1 agree and support.

Joshua 30.1z.2010at 13:26

Farmakoma, honestatis, quidam repudiandae ius in, Chears! 1)

Screenshot from the comments on "The Journal" template package.

ARTICLE MAP

To round up the article page, here is the line that displays a map with locations that have
been set in the Article Edit page by your journalists. There is more about maps and
geolocation in a later chapter.

1. <div class="widget block"><h3>Map</h3>

2. {{ map show_locations_list="true" show_reset_link="Show initial Map" widt
h="300" height="250" }}
3. </div>

56

Map:
San Francisco Center
Palo Alto Center

Show initial Map
: Alameda W

s Si
280/ lea
Daly. City
' San San Lon
South Sant Francisco Bay
Francisco
San Bruno
FPacifica
Burlingams
Hillsborough San Mateo

Faster City

Mo
Belmont
W bt Date - TRAL0S 0568

Map embedded in article. Locations are handled in the Article Edit screen.

ARTICLE ATTACHMENTS

Journalists can attach files to an article. We also include them in the article.tpl as a separate
sub-template article-attachments.tpl. The code snippet below checks if attachments are
present, and displays a list if there are.

1. {{if Sgimme->article->has_attachments}}

2.

3. {{list_article_attachments}}

4.

5.

6. {{$Sgimme->attachment->file_name}}

7. [{{ Sgimme->attachment->extension }}|{{$gimme->attachment->size_kb}}K
b]

8.

9. {{$Sgimme—>attachment->description}}

10. </1li>

11. {{/1list_article_attachments}}

12.

13. {{/if}}

LISTING ARTICLES

You can create lists of articles, which is usually done inside a section overview of the
content. But it can also be interesting to use this on the article page for "further reading" or
"related articles".

Listing articles with list_articles is the most powerful and mostly used statement in
Newscoop. You can check the Template Reference at the end of this Cookbook for all
function options. Here are just a few examples to give you a taste:

57

List the last 10 articles:

{{ list_articles length="10" order="byPublishDate desc" ignore_issue="tru
e" ignore_section="true"}}

{{* code goes here *}}

{{ /list_articles }}

Show last published article, of type 'article’, from section number 100, regardless of issue:

{{1list_articles length="1" constraints="type is article section is 100" i
gnore_issue="true" order="bypublishdate desc"}}

{{* code goes here *}}

{{/list_articles}}

List the last article from section numbers 100 to 140:

S

{{ list_sections constraints="number greater_equal 100 number smaller_equ
al 140" }}

{{ list_articles length="1" ignore_issue="true" order="byPublishDate de
sc" }}
{{* code goes here *}}

{{/list_articles}}
{{/list_sections}}

List 10 more articles from the same section, ordered by publish date, excluding the one

already defined:
1. {{list_articles length="10" constraints="number not ' $gimme->default_arti
cle->number " ignore_issue="true" order="bypublishdate desc"}}
2. {{* code goes here *}}
3. {{/list_articles}}

58

2 0 ARTICLE COMMENTS

In this chapter you will learn how to display comments and the comment form, and how to
use CAPTCHA or ReCAPTCHA spam protection. Comments are the place for your
readers to give their feedback on an article. Comments also reflect the conversation of the
community of your publication. Your readers are not only communicating their ideas about
the article, but also communicating with each other.

Enabling and disabling comments is set for each publication in the administration interface.
Here you can enable or disable comments for publications, for article types and for
individual articles. If you switch off comments at the publication level, no comments can be
added at all. The next level is article type: if you disable comments here, the option will not
appear in the Article Edit screen for articles of this type. If both of these options are
enabled, editors can switch commenting off for an individual article.

LISTING THE MOST COMMENTED ARTICLES

Before we dive into article comments, here's a little nugget showing how you can list articles
by the number of comments they have, in descending order:

{{ list_articles order="bycomments desc" }}
<p>
{{ Sgimme->article->name }},
comments: {{ S$gimme->article->comment_count }}
</p>
{{ /list_articles }}

oUW N

This list_articles function will list the articles inside the current section, by default. To list
all articles from an issue use:

{{ list_articles ignore_section="true" order="bycomments desc" }}
For the entire publication, use:

{{ list_articles ignore_section="true" ignore_issue="true" order="bycomments des
c" }}

LISTING ARTICLE COMMENTS

The following code has been taken from the template pack "The Journal", designed by Woo
Themes and available on the Sourcefabric website. If comments are available, you can list
them like this:

1. {{ list_article_comments columns="2" order="bydate desc"}}

2. {{ if $gimme->current_list->at_beginning }}

3. <h4>{{ $gimme->article->comment_count }} Response(s) to "{{ S$gimme->art
icle—>name }}"</h4>

4. <ol class="commentlist">

5. {{ /if }}

6. <li class="comment {{ if S$gimme->current_list->column == "1" }}odd{{ e
lse }}even{{ /if }}">

7. <div class="comment-head cl">

8. <div class="user-meta">

9. <strong class="name">{{ S$gimme->comment->nickname }}

10. {{ S$gimme->comment->submit_date|camp_date_format:"%e.%m.%Y a
t SH:%1i" }}

59

11. </div>

12. </div>

13. <div class="comment-entry">

14. <p>{{ S$gimme->comment->content }}</p>
15. </div>

16. </1li>

17. {{ if $gimme->current_list->at_end }}

18.

19. {{ /if }}
20. {{ /list_article_comments }}

list_article_comments lists the comments. columns="2" is used to add "odd" and
"even" classes in the list. order="bydate desc" assures that the newest comment appears
on the top of the list. The other values in this example are pretty much self-explanatory.

More properties of the article comment can be printed, like e-mail or unique ID. You can
find these properties in the reference part of this Cookbook.

If you want to display the comments only if commenting is enabled, use the above code
inside the following IF function:

1. {{ if S$gimme->article->comments_enabled }}
[... code goes here ...]
3. {{ /if }}

N

If you want to display the comments only if the reader has access to the content of the
article - either because it is available to all, or because the user is logged in and has a
subscription to the content - use the above code inside the following IF function:

1. {{ if S$gimme->article->content_accessible }}
[... code goes here ...]
3. {{ /if }}

N

You can also combine the two like this:

1. {{ if S$Sgimme->article->comments_enabled && S$gimme->article->content_acces
sible }}

2. [... code goes here ...]

3. {{ /if }}

CREATING THE FORM FOR ARTICLE COMMENTS

The comment form can be styled freely. It is wrapped in {{ comment_form }} which creates
the form tag automatically. The HTML inside is limited only by your imagination.

1. {{ comment_form html_code="id=\"commentform\"" submit_button="SUBMIT" but
ton_html_code="tabindex=\"6\"" }}

2. <label for="author"><small>Name (required)</small></label>

3. {{ camp_edit object="comment" attribute="nickname" html_code="id=\"author
\" 22\" tabindex=\"1\"" }}

4. <label for="email"><small>E-mail
1></label>

5. {{ camp_edit object="comment" attribute="reader_email" html_code="id=\"em
ail\" 22\" tabindex=\"2\"" }}

6. <input type="hidden" name="f_ comment_subject" value="Site comment" />

7. {{ camp_edit object="comment" attribute="subject" html_code="id=\"comment
—subject\" tabindex=\"3\"" }}

8. <label for="comment"><small>Comment</small></label>

9. {{ camp_edit object="comment" attribute="content" html_code="id=\"comment
\" rows=\"5\" tabindex=\"4\"" }}

10.

(will not be published) (required)</smal

60

11. <label for="f_captcha_code"><small>Enter the code:</small></label>{{ camp
_edit object="captcha" attribute="code" html_code="id=\"comment-code\" ta
bindex=\"5\"" }}

12. {{ /comment_form }}

As shown above, the display of the form can be controlled to show up only IF the article
allows commenting or IF the user has access to the article.

SPAM CONTROL WITH CAPTCHA

To prevent automated spamming, you can add a CAPTCHA image to your comment form.
It displays letters which the user needs to type in before posting their comment. Include a
CAPTCHA by adding the following lines just before {{ /comment_form }}:

1.

2. <label for="f_captcha_code"><small>Enter the code:</small></label>{{ camp
_edit object="captcha" attribute="code" html_code="id=\"comment-code\" ta
bindex=\"5\"" }}

When submitting the comment, the string typed by the reader is checked against the
CAPTCHA image. If it is not identical, an error can be displayed.

{{ if $gimme->submit_comment_action->is_error }}
{{ $gimme->submit_comment_action->error_message }}
{{ Sgimme->submit_comment_action->error_code }}

1
2.
3
4. {{ /if }}

The error code is machine generated and can not be changed. The error message can be
changed in the administration interface, in "Localization".

SPAM CONTROL WITH RECAPTCHA NEWSCOOP PLUGIN

Instead of the solution mentioned above, you can use the ReCAPTCHA plugin (which
works with Newscoop 3.5.2 and higher). In that case, you only need to use:

<p>

{{ recaptcha }}

</p>

You can read what reCAPTCHA is at http://www.google.com/recaptcha
Then, make sure to create the proper key for your site here:

https://www.google.com/recaptcha/admin/create

Your comment form will look like this

61

http://www.google.com/recaptcha
https://www.google.com/recaptcha/admin/create

Leave a Reply

Name (required)
Please fill the required box or

you can’t comment at ail. Please
use kind words. Your e-mail
address will not be published.

Email (will not be published) (required)

You can use these HTML tags
and attributes: <a href=""
title=""> <abbr title="">
<acranym title="">

Comment

<blockquote cite=""> <cite>

<code> <del datetime:

 <i> <q cite="">

SC‘\ <strike>
Type the two words:
¥ ‘ ReCAPTCHA

HEALTH EN

t | Aboutus |

2011 The Designed by W00 THEMES

Steps to perform in order to work with this plugin:

|. Download the recaptcha plugin from our site (if you installed Newscoop 3.5.2 or
higher, you should have this plugin already in your Plugins Manager)
2. Install and enable the plugin through the Plugins Manager in the Newscoop
administration interface (in the main menu, Plugins -> Manage Plugins)
3. Configure the plugin, the options are:
|. Enable for comments:
2. Enable for subscriptions:
3. Enter the public key:
4. Enter the private key:
4. Include the appropriate template tag within your forms:

comments form:
{{ recaptcha }}
subscriptions form:
{{ recaptcha form='subscriptions' }}

Finally, enable the use of CAPTCHA for your publication in the Publication configure
screen.

CHECKING FOR ERRORS AND ARTICLE MODERATION

To go through the process of submitting, checking and giving feedback on article
moderation you could structure the template in the following way:

1. {{ if S$gimme->submit_comment_action->defined && $gimme->submit_comment_ac
tion->rejected }}
Your comment has not been accepted.
{{ /if }}
{{ if $gimme->submit_comment_action->is_error }}
{{ $gimme->submit_comment_action->error_message }}
{{ $gimme->submit_comment_action->error_code }}
{{ else }}

o Ul W N

62

8. {{ if S$gimme->submit_comment_action->defined }}

9. {{ if Sgimme->publication->moderated_comments }}
10. Your comment has been sent for approval.

11. o /if)}

12. {{ /if }}

13. {{ /if }}

14. <h2>Leave a Reply</h2>
15. {{ if S$gimme->user—>blocked from comments }}

16. You are not allowed to comment.

17. {{ else }}

18. {{ comment_form html_code="id=\"commentform\"" submit_button="SUBMIT" but
ton_html_code="tabindex=\"6\"" }}

19. [...]

20. {{ /comment_form }}

21. {{ /if }}

In this example you can also see where and how to place feedback for banned users.

PREVIEW OF COMMENTS

If you want to allow readers to preview their comments, you need to add the code

preview_button="Preview" to {{ comment_form ... }}. "Preview" is the text that will be
isplayed on the button, but you can change this value.

displayed on the button, but y hange this val

{{ comment_form html_code="id=\"commentform\"" submit_button="SUBMIT" preview_b
utton="Preview" button_html_code="tabindex=\"6\"" }}

If you add the preview_button, you will see the button show up at the end of the form. If
the reader writes a comment and clicks "Preview", the preview can be displayed using the
following template code:

1 {{ if $gimme->preview_comment_action->is_error }}

2 <p>There was an error previewing the comment:

3 {{ Sgimme->preview_comment_action->error_message }}

4. </p>

5. {{ /if }}

6 {{ if Sgimme->preview_comment_action->ok }}

7 Comment preview

8 Subject: {{ S$gimme->preview_comment_action->subject }}

9 Reader e-mail: {{ $gimme->preview_comment_action->reader_email }}<br/
>

10. Content: {{ $gimme->preview_comment_action->content }}

11. {{ /if }}

A good place to put this code is just above the comment form.

NESTED COMMENTS: USING THREADS AND LEVELS

Comments can be displayed as nested trees.

1.

2. {{ assign var="level" value="1" }}

3. {{ list_article_comments order="bydate asc" }}

4. {{ if S$gimme->comment->level gt $level }}

5. {{ assign var="level" value=$gimme->comment->level }}
6.

7. {{ /7if }}

8. {{ 1f $gimme->comment->level < $level }}

9. {{ php }}

10. $gimme = S$this->get_template_vars ('gimme');
11. $level = Sthis->get_template_vars('level');
12. Scount = $level - S$gimme->comment->level;
13. for (; $count > 0; S$Scount --) {

63

echo "";
}

{{ /php }}
{{ assign var="level" value=$gimme->comment->level }}
{{ /7if }}
<1i>{{ if $gimme->comment == $gimme->default_comment }}{{ /if }}

Level: {{ $gimme->comment->level }}

Subject: {{ S$gimme->comment->subject }}, Reader email: {{ $gimme->com
ment->reader_email }}

{{ 1f $gimme->comment == S$gimme->default_comment }}{{ /if }}

Content: {{ $gimme->comment->content }}

</1li>

{{ /list_article_comments }}

64

2 I . SITES IN MULTIPLE LANGUAGES

In this chapter, we're working with one of Newscoop's main advantages: the ability to easily
create and manage multilingual publications.

The following screenshot shows the administration interface of a publication in English,
Russian and Spanish. This is what you will see when you go to the list of issues:

Number Name URL Hame Publish Date Configure Translate Preview Delete
(click to see sections) (YYYY-MM-DD}
15 larch 2011 (English) marzor1 FITEEROTE P m Q @
15 laro2011(Espafio) marzo11 ZPTEERD3 Fa m Q @
15 HapT 2011 (Pycouity marz011 iﬂuluﬁsﬁu ¥ m qQ @
14 February 2011 (English) feb2011 i?]ul'oﬁsﬁﬂ_;”a_ﬁi éﬁ‘f [l] Q x|
14 Febrero 2011 (Espafiol) feb2011 f‘?11:1|'°“35ﬁ1_; 3”29 gﬁ{ LIJ Q %]
14 ©espank 2011 (Pyccknin) feb2011 E‘?11:1;?\?;ﬁ4—.;-:l19-:lwle éﬁ‘f 1] Q [%]
13 January 2011 (English) jan2011 i?]ul'oﬁsﬁﬂ_;”{ife @a‘f [l] Q [
13 Enero 2011 (Espafiol) enero2011 E\?mi:‘lfuuasﬁs-gaﬁ-ﬁe 4{9 1] Q %]
13 Aueapb 2011 (Pycckwi)) jan2011 E‘?J:"Ll'oﬁsﬁ”:;s“:_tfe @a{ 1] Q %]
12 December 2010 (English) dec2010 f‘?11:1|'°“35ﬁ1_; 4{9 LIJ Q %]
12 Diciembre 2011 (Espaiiol) dic2010 f\?11:1|-0\\35ﬁ5-g od X LIJ Q %]
12 [lexabps 2010 (Pycokuii) dec2010 E‘?J:"Ll'oﬁsﬁ”:;s:l:‘:_ﬂe gﬁf 1] Q %]
11 Movember 2010 (English) nov2010 i?]ul'oﬁsﬁﬂ_;”“_ﬁfe f{’ [l] Q [
11 Maoviembre 2010 (Espaiiol) nov2010 f\?11:1|-0\\35ﬁ5-g ?”59 gﬁf LIJ Q %]
11 Hombps 2010 (Pycormit) nov2010 6511:1;:0\\35_5%;-:he-:u|e % 1] Q @

List of issues in the admin interface for a multilingual publication in English, Russian and Spanish.

In Newscoop, there is the publication's default language (set in Content >Publication
>Configure) and other language versions, or translations. Other languages are defined by
creating translations of issues and articles. In the screenshot above, you can see that every
issue is translated into two additional languages.

You don't need to create these translations with every new issue - when you add a new
issue and choose the option to 'Use the structure of previous issue’, a new issue will be
created with all the language versions that already exist.

Note that all of an issue's language versions hold the same issue number. Similarly, sections
in translated issues keep the original section's number, and translated articles keep the
original article's number.

So how does Newscoop handle multilingual content? By changing the language parameter.
Take a look at these three URLs:
http://example.com/en/mar201 | /posts/4/healthy-options.htm

http://example.com/es/mar20 | | /posts/4/opciones-saludables.htm

65

http://journalist.newscoop-design.sourcefabric.org/en/mar2011/posts/4/healthy-options.htm
http://journalist.newscoop-design.sourcefabric.org/es/mar2011/posts/4/.htm

http://example.com/ru/mar201 | /posts/4/-htm

The most important difference regarding multilinguality lies in the language code (en, es, ru)
and in the last part of the URL, generated using topics for SEO purposes. Incidentally, those
links will work without that last part of the url. The article number (4) is enough to tell
Newscoop which article it is.

Switching between languages

To switch from one language to another, we build a list of available languages. In our language
switcher, if we change only the language parameter, all other parameters currently active will
be used. If you change the language while on the article page, you will jump from translation
to translation.

1.

2. {{ list_languages of_publication="true" }}

3. <1li style="background: transparent url (http://{{ $gimme->publication-—
>site }}/templates/_img/flags/{{ $gimme->language->code }}.png) no-repeat
S5px center">

4, {{ $gimme->language—>name }}

5. </1li>

6 {{ /list_languages }}

7.

This switcher lists all languages defined by the content inside a publication. Because you
cannot place a Greek translation into a Spanish issue, the appropriate issue is automatically
created at the moment when you try to create an article in a language which is not yet
defined.

Translate article
Article name (English): Healthy options for your sweet tooth
Mew article name: |
Language: | EMnvik@
An issue must be created for the selected language. Please enter the issue name and URL name.
New issue name: | March 2011

New issue URL name: | mar2011

A section must be created for the selected language. Please enter the section name and URL name.

New section name: | Posts

New section URL name: | posts

Now let's get back to our language switcher. It will try to keep the active issue, section and
article (if they exist in the required language). If not, the switcher will simply fall back to the
previous level where a translation exists (i.e. section, and if section doesn't exist, then issue,
which definitely exists - otherwise it wouldn't be on the language list).

What happens once your user switches to another language? Newscoop tries to serve all
database content in that language - not only articles, but all other elements like system
values for date (day names and month names), topics, author biographies etc. It is therefore
important that all these values are translated to languages you plan to use.

Template strings also need translation; this is how you treat every string:

|
66

http://journalist.newscoop-design.sourcefabric.org/ru/mar2011/posts/4/.htm

2. {{ if S$gimme->language->english_name == "Spanish" }}Bsqueda{{ /if }}
3. RS

NOTE: There are some pieces of content that are not yet translatable:

I. Image captions

2. Form buttons

3. Some configuration settings that might be used to output values, for example {{
$siteinfo.description }}

You can solve this situation with following workarounds:

|. Create an article field of single-line text, where journalists can store translations of
image captions

2. For forms, you will need to set 'if' statements to check which language page is opened
and to provide a version of the form with appropriate button labels (or graphical
buttons)

3. Skip using configuration values, and instead use the translatable information stored in
the publication structure (in some special article maybe, or as section description,
or... be creative)

67

22 SEARCH TEMPLATES

You can control your search form and search results with templates. This gives you design
freedom for the list of results, as well as the complexity and appearance of your search
form.

The Search Form

Using the default Newscoop function {{ search_form }} creates a form like the following
screenshot:

Search

keyword|

You can use the following code to create the form:

1. <h3>Search Articles</h3>
2. {{ search_form template="search.tpl" submit_button="Search" html_code="cl
ass=\"group\" id=\"search-form\"" button_html_code="id=\"search-button\""

1}

3. {{ camp_edit object="search" attribute="keywords" html_code="id=\"sea
rch-field\"" }}
4. {{ /search_form }}

The search terms are sent to the sub-template specified inside the function: search.tpl.
(Note: if your search.tpl file is inside a folder, you need to specify the full path, the same as
with the include function. You can also see how different html classes/IDs can be added to
the form elements (using html_code and button_html_code; quotes inside need to be
escaped), and how the submit_button text is defined (submit_button="Search").

To create a search form which doesn't have a button with text, but an image like the one
shown below, you can use the following approach.

© keywords

1. <div class="search">

2. {{ search_form template="search.tpl" submit_button=" " html_code="id
=\"topSearch\"" button_html_code="class=\"replace\"" }}

3. <p class="fields">

4. {{ camp_edit object="search" attribute="keywords" html_cod
e="id=\"s\" }}

5. </p>

6. {{ /search_form }}

7. </div><!-—— /.search ——>

Search results

First, here is the example code for the search results template search.tpl:

1. <div id="main">

2. <hl>Search results</hl>

3.

4. {{ list_search_results length="5" order="bypublishdate desc" constraints=
"type is news" }}

5.

6 <div class="post">

68

7. <h2 class="post-title"><a href="{{ uri options="article" }}"
rel="bookmark" title="{{ $gimme—>article—>name }}</h2>

8. <p class="post-details">Published on {{ $gimme->article->publ
ish_date|camp_date_format:"%e %M $Y" }} by {{ $gimme->article->author->n
ame }} in {{ S$gimme->section->name

}1</p>

9. {{ 1f Sgimme->article->has_image (1) }}ar
ticle->name }}" href="{{ uri options="article" }}"><img src="{{ uri optio
ns="image 1 width 134"}}" alt="{{ Sgimme->article->image->description }}"
class="woo-image thumbnail">{{ /if }}

10. <p>{{ S$Sgimme->article->deck }}</p>

11. </div><!—— /.post ——>

12.

13. {{ if $gimme->current_list->at_end }}

14. <div class="more_entries">

15. <div class="alignleft">{{ if $gimme->current_list->has_previo
us_elements }}<a href="{{ uripath options="template search.tpl" }}?{{ url
parameters options="previous_items" }} ">« Newer Entries{{ /if
}r</div>

16. <div class="alignright">{{ if $gimme->current_list->has_next__
elements }}<a href="{{ uripath options="template search.tpl" }}?{{ urlpar

ameters options="next_items" }}">0Older Entries »{{ /if }}</div>
17. </div>

18. {{ /if }}

19. {{ /list_search_results }}

20.

21. {{ if S$gimme->prev_list_empty }}

22. <div class="postinformation">No results found</div>
23, {{ /if }}

24.

25. </div><!-- /#main -->

Inside the list of search results, we have a div container of the class "post" which is being
repeated as many times as there are results for the search terms. List length is limited to 5,
so if there are more than five list elements, a link to the next page is created. The link to the
previous page is also created, in case the reader is not on the first page of search results. All
of this is done inside an if statement:

1. {{ if $gimme->current_list->at_end }}
2. ...
3. {{ /if }}

You can also find a neat pagination example in the advanced section of this manual, where
pagination is explained. If no search results were found, Newscoop would display a message
like this:

1. {{ if $gimme->prev_list_empty }}
<div class="postinformation">No results found</div>
3. {{ /if }}

N

The parameter prev_list_empty refers to the list just before this statement - which was the
search results list. In case the list of search results was empty, this sends an appropriately
apologetic message.

Advanced search

Newscoop also offers 'advanced search' options. An advanced search form may appear to
your publication's readers like this screenshot:

69

Searchby: @ text () title) author

Keyword: SEARCH

Date: from

Issue: [=]

The code which generates this form is shown below:

[

g w N

20.

21.
22.
23.

{{ search_form template="search.tpl" submit_button="Search" button_html c
ode="id=\"adv-search-button\" class=\"rounded\"" }}
<div class="left">
<div class="form-element">
<label>Search by:</label>
<input class="radio" name="f_search_scope" value="content" checke
d="checked" type="radio">text
<input class="radio" name="f_search_scope" value="title" type="ra
dio">title
<input class="radio" name="f_ search_scope" value="author" type="r
adio">author
</div>
<div class="form-element">
<label for="adv-search">Keyword:</label>
{{ camp_edit object="search" attribute="keywords" html_code="id=\
"adv-search\"" }}
</div>
<div class="form-element">
<label for="adv-select">Issue:</label>
{{ camp_select object="search" attribute="issue" html_code="id=\"
adv-select\"" }}
</div>
<div class="form-element">
<label>Date:</label>
<div class="g-left">from {{ camp_edit object="search" attribute="
start_date" }}</div>

<div class="g-right">to {{ camp_edit object="search" attribute="e
nd_date" }}</div>
</div>
</div><!-- /.left -->

<div class="right">{{ /search_form }}</div>

This form is different than the simple search form earlier in this chapter, as it has more
options for filtering the results of the search. Firstly, the reader has the option to narrow
their search only to article text, article title, or article author, by selecting the appropriate
radio button. The generated HTML for this part of the form looks like this:

N

<div class="form-element">

<label>Search by:</label>

<input class="radio" name="f_search_scope" value="content" checked="c
hecked" type="radio">text

<input class="radio" name="f_search_scope" value="title" type="radio"
>title

<input class="radio" name="f_search_scope" value="author" type="radio
">author
</div>

Next, the reader has the option to select a particular issue to narrow down their search,
and this part of the code is responsible for that feature:

70

<div class="form-element">
<label for="adv-select">Issue:</label>

3. {{ camp_select object="search" attribute="issue" html_code="id=\"adv-
select\"" }}
4, </div>

The HTML generated after template parsing is:

1. <div class="form-element">

2. <label for="adv-select">:</label>

3. <select name="f_search_ issue" id="adv-select">

4. <option value="0" selected="selected"> </option>

5. <option value="8">8. Issue 8 (2011-03-18 08:00:08)</option>
6. e

7. <option value="1">1. Issue 1 (2010-12-02 08:00:07)</option>
8. </select>

9. </div>

The final option is to specify the time frame from which the reader wants to get search
results. This is done with inline date choosers:

1. <div class="form-element">

2. <label>Date:</label>

3. <div class="g-left">from {{ camp_edit object="search" attribute="
start_date" }}</div>

4. <div class="g-right">to {{ camp_edit object="search" attribute="e
nd_date" }}</div>

5. </div>

The HTML that gets generated by this piece of Newscoop code is rather too long for this
book. You can style the start and end date fields in CSS with the following id's:

#advanced-search #f_search_end_date,
#advanced-search #f_search_start_date {

1
2.
3. width: 58px;
4

If you need to style the calendar that pops up when the reader clicks the date chooser field,
there is the file javascript/jscalendar/calendar-system.css in your Newscoop installation. Feel
free to play with it.

71

23 MAKING A 404 PAGE TEMPLATE

Good-looking, user-friendly "404 page" templates let people know that although the page
they requested can't be found, the site is still up and running correctly. Another Newscoop
feature at the publication configuration level enables site developers to specify the template
which will be used when readers try to load an invalid URL or non-existent page.

Invalid URL Template: | 2011/404.tpl [=]

Your job is to design a new template for this purpose, and then to select it in the drop-
down menu above. Every time a site visitor tries to open a non-existent page, you can
provide them with a message that something went wrong, and offer useful links to pages
they might be interested in.

For example, this ccould be your 404 template:

1. {{ include file="_tpl/_html-head.tpl" }}
2. <body>
3. <div id="top">
4. <div id="top-meta">
5. <div class="date">{{$smarty.now|camp_date_format:"$M %e, %Y"}}
</div>
6 {{ include file="_tpl/top-search-box.tpl" }}
7. </div><!-- /#top-meta ——>
8. <div id="header">
9 <div class="logo">
10 publication->site }}" title="{{
Sgimme->publication->name }}">publication->si
te }}/templates/_img/logo.png" alt="">
11. </div><!-- /.logo -->
12. </div><!-— /#header -—>
13. </div><!-- /#top -—>
14. <div>
15. {{ if ! $gimme->url->is_valid }}
16. <hl>Sorry, the requested page was not found.</hl>

17. {{ /if }}
18. </div>
19. <div id="footer">

20. <ul id="category-nav">

21. {{ list_sections }}

22. <li class="cat-item"><a href="{{ uri options="section" }}" title="V
iew all posts filed under {{ S$gimme->section->name }}">{{ S$gimme->section

—>name }}</1li>
23. {{ /list_sections }}

24.

25. <ul id="page-nav">

26. {{ set_issue number="1" }}

27. {{ set_section number="5" }}

28. {{ list_articles }}

29. <1li class="page_item"><a href="{{ uri options="article" }}" ti

tle="{{ $gimme->article->name }}">{{ $gimme->article->name }}</1i>
30. {{ /list_articles }}

31. {{ unset_section }}
32. <1li style="border: medium none;" class="page_item"><a href="{
{ uri options="template set_thejournal/archive.tpl" }}" title="Archives">

Archives</1i>
33. {{ set_default_issue }}
34.
35. </div>
36. </body>
37. </html>

A quicker solution may be to redirect all invalid URL requests back to your home page, but
visitors deserve more precise information about what's going on, as well as a choice about
what they want to do next.

73

ADVANCED TEMPLATING

24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

74

TOPICS, SWITCHES, KEYWORDS TO STRUCTURE CONTENT
MANAGING STATIC PAGES

LIST OF POPULAR ARTICLES (MOST READ)

LIST OF LATEST COMMENTS

USING MAPS

MANAGING MULTIPLE AUTHORS AND ARTICLES
SUBSCRIPTIONS, REGISTRATION AND CONTENT ACCESS
BROWSER DETECTION AND ROBOTS (SEARCH ENGINES)
MOBILE DEVICE DETECTION AND TEMPLATES

TAG CLOUDS USING TOPICS

DYNAMIC PAGE LAYOUTS

WORKING WITH IMAGES

PAGINATION OF LISTS AND LONG ARTICLES

AUDIO PLAYER FOR ATTACHED MP3 FILES

RSS, SITEMAP, KML AND XML

SEARCH ENGINE OPTIMISATION (SEO)

NEWSCOOP AND HTMLS

TROUBLESHOOTING TEMPLATES

24 TOPICS, SWITCHES, KEYWORDS TO
STRUCTURE CONTENT

This chapter explains how to order your content in many different ways. Newscoop's
structure of issue > section > article has many advantages. Depending on your publication,
you might want to add other ways to present, structure and group your content. Topics,
switches and keywords allow you to do exactly that.

With topics, you can cross-reference your content, similar to what tags or categories
generally do. Topics are organized like a tree, with root topics and subtopics. Topics can be
translated, can be part of an article type and can become part of the URL. You can check in
your template if and what topics are assigned to an article. In this way you can use topics to
structure your content - and change your layout, if you want.

Some publications using Newscoop replace the concept of issue > section > article entirely
and order their content exclusively using topics. Structuring with topics and using the tree
of topics and subtopics offers some liberties:

® An article can have more than one topic
e The topic tree structure allows variable depth of content
e Based on the position in the topic tree, similar articles can be grouped

Switches are another powerful way to filter your content. Beside two built-in switches
('Show article on front page' and 'Show article on section page'), you can create custom
switches, and then filter your content if articles have these switches active.

Finally, keywords can be used in some cases to further fine-tune your article listings, but
also as an option in creating article URLs which are human readable, increasing SEO.

TOPICS

How you organize topics in a topic tree may be very important. It's usually a good approach
to create a root topic for group of topics, and then make subtopics in that branch.

[Z] en categories # Edit X 2 en food type FEal X

en arts and culture # Edit % en water FEdl X
&n entertainment # Edit % en cocktail S Edit X
en dine & wine A Edit % en fruit S Edit %
en health A Edt % en drink # Edit X
en politics /Edit % &n bread # Edit %

&n gariic SEdit %

&N tomato / Edit %

This way, you can approach a specific topic branch in your templates. Let's look at an
example - you are on a full article page, and want to provide information about all the
categories that article is assigned to.

Read the rest of this entry »

‘Written by Test Persona Posted in health, dine & wine
March 1st, 2011 @ 16:39 Tagged with tomato, garlic, bread

75

The code for this example is:

1. <div class="tags">

2. <p>Posted in {{ list_article_topics root="categories:en" }}<a href="{
{ uri options="template index.tpl" }}" title="View all posts in category
'{{ Sgimme->topic->name }}'" rel="category tag">{{ S$gimme->topic->name }}
{{ if !Sgimme->current_list->at_end }}, {{ /if }}{{ /list_article_top
ics }i</p>

3. <p>Food type: {{ list_article_topics root="Food type:en" }}<a href="{

{ uri options="template archive-food-type.tpl" }}" title="View all posts
for food type '{{ Sgimme->topic->name }}'" rel="food-type">{{ $gimme->top

ic->name }}{{ if !S$gimme->current_list->at_end }}, {{ /if }}{{ /list_
article_topics }}</p>
4. </div>

You see that by specifying option root="categories:en" we can narrow down the list of
topics. If we leave the root option unspecified, the listing will return all topics assigned to an
article, regardless of the branch they are in.

What's more, this allows us to make topic names links to pages which list all articles assigned
that topic. This is possible because the topic parameter is forwarded to the next page as
one of the URL parameters, for example ?tpid=34. As we said before, when some topic is
active, it heavily affects the context, because all article listings are filtered to the currently
active topic only. So, the next page could have a simple article list like this:

{{ list_articles length="10" ignore_issue="true" ignore_section="true" order="b
ypublishdate desc" }}

and it will return the last ten articles that have this topic assigned, regardless of the section
and issue.

You can also work with topics independently, by directly specifying the context you want
to work with.

{{ set_topic name="garlic:en" }} {{ unset_topic }}

Everything inside set_topic and unset_topic is filtered to that specified topic, of course.
Don't forget to unset the topic when you don't need it any more. Also, when you jump to
some page with the topic parameter specified, be aware that the topic context affects the
whole page with all its elements - main navigation, for example. So, in your included
templates, be sure to think side-wide, not only about one page, and if working with articles,
be sure that you locally switch off the topic parameter. You can do that using:

1 {{ local }}

2 {{ unset_topic }}
3. [Saaan your code

4 {{ /local }}

You can also make listings of subtopics. One example that we provide here creates a drop-
down menu with selectable topics that will send you to the next page (category-page.tpl)
with the selected topic activated.

1. <script type="text/JavaScript">

2. function MM_JjumpMenu (targ, selObj, restore) {

3. eval (targ+".location=""+selObj.options[selObj.selectedIndex] .value+"'
")

4., if (restore) selObj.selectedIndex=0;

5. '}

6. </script>

7.

76

9. <label for="category">Category:</label>

10. <select id="category" name="category" onChange="MM_jumpMenu ('parent',
this, 0) ">

11. {{ set_topic name="Category:en" }}

12. <option selected>————— choose ————- </option>

13. {{ list_subtopics }}

14. <option wvalue="{{ uri options="template category-page.tpl" }}">

{{ $gimme->topic->name }}</option>

15. {{ /list_subtopics }}

16. {{ unset_topic }}

17. </select>

18. </form>

In Newscoop you don't need to specify the topic parameter directly in:

|({ uri options="template category-page.tpl" }}

because the topic is currently active (you are inside the topics list!) and is already part of {{

uri }}.

For the use of topics in SEO strategy, see the chapter on Search Engine Optimization.

SWITCHES

You can use switches in two ways - by setting an 'if' clause

1. {{ if S$gimme->article->custom_switch_name }}
2. your code
3. {{ /if }}

or in article lists, using

{{ list_articles constraints="custom_switch_name is on" }}

The list will then (beside other options that you may set) filter articles to return only those
with custom_switch_name switched on.

You can, for example, use custom switches to determine if an article has to appear on the
website in a breaking news block, or as an ordinary, less emphasized article. You can find an
example of this in the chapter about dynamic page layouts.

Beside custom switches, you can use Newscoop's built-in switches 'On front page is on'
and 'On section page is on'. Initially, these switches are meant to be used to determine if an
article needs to be shown on the front and/or on the section page. Imagine a publication
with sections featuring very many articles; not all articles can show up on the section page,
and it would be even harder to link all articles directly from front page. So, these options
can help journalists and editors promote the most exciting content in their publication.

Built-in switches can be used in article lists:

1. {{ list_articles constraints="onfrontpage is on" }}
2. {{ list_articles constraints="onsection is on" }}

or in 'if' clauses:

1. {{ if $gimme->article->on_front_page }}
2. {{ if Sgimme->article->on_section_page }}

77

KEYWORDS

The Keyword field exists by default in every article, and you can use its content in different
ways - by setting if clauses, for example:

1. {{ if S$gimme->article->has_keyword ("organic") }}
2. -
3. {{ /if }}

or in an article list:

1. {{ list_articles constraints="keyword organic" }}

N

3. {{ /list_articles }}

Such a list will return all articles with the keyword 'organic' assigned. For using keywords in
SEO strategy, see the chapter Search Engine Optimization (SEO).

78

25 MANAGING STATIC PAGES

Newscoop doesn't have a special place for publishing static pages. There are different ways
of handling static pages, depending on the requirements of your publication. You can park
them in a separate publication, in a separate issue or a dedicated section.

A simple way of handling static pages is by using a specific Article Type - in our case "page" -
and place pages in any issue or section you want. Then you can list those static pages like
this:

1.

2. {{ list_articles ignore_issue="true" ignore_section="true" constraints="t
ype is page" }}

3. {{ $gimme->article->name }}</
a></1i>

4. {{ /list_articles }}

5.

This will list all articles which are of the type "page", regardless of their issue or section.

A more sophisticated approach often seen in Newscoop implementations is to create a
special issue, outside of the chronological ordering of "normal” issues. Most often that's
issue number |, with a structure and articles which are different from the rest of the
publication.

For example, you could have issue number | with the name 'pages’, and inside it the
sections 'about’ and 'legal'. To access the content in your publication, you would set the
environment to the special issue, and by enclosing everything in {{ local }}..{{ /local }} you
could ensure that general context of parameters is not changed.

1. {{ local }}
2. {{ set_issue number="1" }}
3. {{ list_sections }}

We have two sections, and want to create two subheads with section names, and then
unordered lists with articles inside:

1 {{ list_articles constraints="type is page" }}
2 {{ if S$gimme->current_list->at_beginning }}
3. <h3>{{ $gimme->section->name }}</h3>

4

5 {{ /if }}

The subhead will be printed, and the unordered list opened only if the section has articles
inside.

{{ S$gimme->article->name }}</
a></1i>

In the code above, all the names of articles inside the section are made into links pointing to
the full article pages.

1. {{ if $gimme->current_list->at_end }}
2.
3. {{ /1f }}

The code above will close the unordered list, once the last article is reached. Finally, the
statements are closed, with the code below.

79

1. {{ /list_articles }}
2. {{ /list_sections }}
3. {{ /local }}

This way, editors of the publication have the option to independently update the content of
these static pages. Keeping them in issue number |, they can easily jump there with only
one click from the issue listing page.

80

10. LIST OF POPULAR ARTICLES (MOST
READ)

For many publications, a listing of the most popular articles is an easy way to keep readers
on the site, thus increasing both page views and time on site. Newscoop has an internal
statistics mechanism which counts page views (the mechanism counts each URL request as
a "read"), and that mechanism can be called in other templates.

In this case, we will call the available functions to make a list of popular articles, which can
then be arranged on a page like the screenshot below.

(TeEsi=Cinl RECENT COMMENTS

European Council candidates set to be named

Online security risks
Wintry conditions sweep
Luxury health breaks on offer

Food export duties set to rise

The following code snippet is taken from The Journal's front page, from the sub-template
set_thejournal/_tpl/front_tabs.tpl

It is displayed inside a jQuery tab which displays comments together with the most read
articles, which explains why the CSS <div> tags are the same for both. Read the chapter List
of latest comments for instructions on how to make that template, and read the chapter on
Tabs with jQuery for instructions on how to make the tab.

This will do the following:

Assign the styling for the tab box

Set the issue to the current one

Return a list of five articles, ordered by popularity in descending order
Set a constraint for the article type of 'news'

Get the URI for the article

L]
L]
L]
L]
L]
e Display the article name

<div id="tabs" class="block">
<ul class="idTabs wrap tabs">
Most Read</1li>
Recent Comments</1li>

<div class="inside">
<ul style="display: block;" id="commented">
{{ local }}
{{ set_current_issue }}
{{ list_articles length="5" order="bypopularity desc" constraints="type i
s news" }}
{{ $gimme->article->name }}
</1li>
{{ /list_articles }}
{{ /local }}

O W Jo U WN

= =
-

[
N

[
w

8l

Here is another example, which will tell Newscoop to do the following:

e List the ten most popular articles

e Those articles must have the article type of ‘article’

e They must be from sections numbered between 20-300

® They must only be from the last five issues

e They will be ordered in descending order according to their popularity

1. {{ list_articles length="10" constraints="type is article section greater
19 section smaller 301 issue greater " $gimme->issue—>number-5"" order="b
ypopularity desc" }}

Note the use of the backtick character in the code above. The next snippet will list the ten
most popular articles in the last seven days. It will:

® Assign a variable for the date that is seven days in the past

e List the ten most popular articles in descending order

Set constraints so that the dates of the articles returned are within the time we set in
the variable

e Return articles regardless of issue and section

1. {{assign var="xdate" value="-7 days"|date_format:"$Y-%m-%d"}}

2. {{list_articles length="10" order="bypopularity desc" constraints="publis
h_date greater $xdate reads greater 0" ignore_issue="true" ignore_section
="true"}}

The following example will:

Assign a variable for a date one month in the past
List the ten most popular articles in descending order

e Set constraints where the article type is 'article,' and the publish date is within the
time we set in the variable

e Return articles regardless of issue

e Return articles regardless of section

1. {{assign var="xdate" value="-1 month"|date_format:"$Y-%m-%d"}}

2. {{list_articles length="10" order="bypopularity desc" constraints="type i
s article publish_date greater $xdate reads greater 0" ignore_issue="true
" ignore_section="true"}}

82

27 LIST OF LATEST COMMENTS

The Newscoop internal statistics mechanism keeps track of the latest comments, and this
mechanism can be used to create a list of the ten most recent comments on the site for all
articles. The following code snippet is taken from The Journal's front page, from the sub-
template set_thejournal/_tpl/front_tabs.tpl

It is displayed inside a jQuery tab which displays comments together with most read articles
(read the chapter List of popular articles (most read) for instructions on how to make that
template).

Here is a screenshot:

(eIl RECENT COMMENTS

Winnetou on New horizons for the browser

Papadopulos on N 1es winner a taste of
paradise

T

ttermaniac on Oniin

Pia Zadora on European Council candidates set to
be named

This code snippet will:

Set the current issue as the active environment

List five articles, ordered by the latest comment, in descending order
Set a constraint so that the article type is 'news'

Apply a different style for the recent comments

List a single comment, by date

List the nickname given by a commenter on a comment

Combine that with the name of the article they're commenting on
Make that article name appear in italic

W N

N

{{ local }}
{{ set_current_issue }}
{{ list_articles length="5" order="byLastComment desc" constraints="type
is news" }}

<1i class="recentcomments">{{ list_article_comments length="1" order=
"bydate desc"}}{{ $gimme->comment->nickname }}{{ /list_article_comments }
} on {{
Sgimme—>article->name }}</1li>
{{ /list_articles }}
{{ /local }}

Here is another example which will do the following:

List the ten most recent comments, regardless of article
Order the comments by date, in descending order

e Provide the URI for the comment and the article's name
e Return the count of article comments

83

Return an excerpt of the article comments, truncated to 400 characters

[]

e Return the date and time the comment was posted

1. {{list_article_comments length="10" ignore_article="true" order="byDate d
esc"}}

2. {{$gimme->article->name}}<sup>{{$gimme
->article->comment_count} }</sup>

3. <p>{{$gimme->comment->content | truncate:400}} {{Sgimme->comment—
>submit_date|camp_date_format:"$H:%$i"}}</p>

4. {{/list_article_comments}}

Finally, here is a similar, but more limited approach. We will:

e List the ten most recently-commented articles, ordered by last comment, in
descending order, regardless of the issue and section they were published in

e Return the article's URI
o Return the article's name
e Return the count of comments for the article

{{ list_articles length="10" order="byLastComment desc" ignore_issue="tru

e" ignore_section="true" }}
$gimme->article->name }}<sup>{{ $gi

2. {{
mme->article->comment_count }}</sup>
3. {{ /list_articles }}

To learn more about listing comments for one specific article and providing the comment
form, read the chapter on Article Comments.

84

28 USING MAPS

In Newscoop, journalists can add points of interest (POls) to a map from the article edit
page, and then add additional information which will appear in a pop-up bubble when a
reader clicks on the POI. This information can include HTML (including embeds from
YouTube, Flickr or Soundcloud).

Hos‘pitals in Berlin @ ;ZHL‘;eed for all Hospitals in

Show initial Map Map: Hospitals in Berlin

gy Wedding (Gesundbrunnén AltHohens: Vivantes Klinikum am Urban

Center
Seadihinf

i
896 Berg Charité

Moabit @ @

Berlin AL Stadt. Krankenhaus Prenzlauer
® Berg
FrobelstraBe 15 10405 Berlin, Germany

Center

a
a Charitéplatz 1, 10117 Berlin

Fennptuhi Center

P

Friedrichshain
Tiergarten 22

81 B8t Rummelsbur Sankt Hedwig Krankenhaus

h s Groe Hamburger Strage 5-11 10115 Berlin, Germany
Alt-Teéptow

Cente
Nationaidefiemal Center

Neukslin

Plagterwald
%y—&& by OpenStreetMap..Rendered by MapQuest;

Map displayed in article. Screenshot taken from "Ushahidi Cooker" template package.

For more on how editors and journalists can create maps and add POls, see the Locations
chapter in the manual Newscoop 3 for Journdlists and Editors, available from:

http://manuals.sourcefabric.org

Creating maps is creating content

Before we dive into how you can use Newscoop's maps and POls in your templates, here's
a bit of our philosophy on geolocation.

Newscoop's mapping is different than just opening a Google Maps embed and passing POls
to Google. This distinction is important, because it has to do with what many publishers
believe will make you money now, and in the future as well.

Publishers may be making a strategic mistake when they pass their POIs to commercial map
providers like Google. It will be harder to monetize that data because Google and its
competitors will be likely to be doing the monetizing instead. We believe that mobile
content represents a major revenue opportunity for publishers, and that location-based
information is one of the keys to mobile revenue.

This was one of the main reasons we wanted to provide publishers with two important
alternatives. The first is that in Newscoop 3's mapping features, publishers keep the points
of interest inside their own database, and because they own their databases, publishers can
monetize that information as they see fit.

85

http://manuals.sourcefabric.org

SELECT THE MAP PROVIDER YOU LIKE

The second crucial point in our design of the geolocation features in Newscoop 3 has to do
with supporting OpenStreetMap, as a free and open source alternative to commercial online
mapping services. OpenStreetMap is to maps as Wikipedia is to encyclopedias - anyone can
contribute and improve its accuracy, which means that many parts of the world are far
better mapped with OpenStreetMap than they are with commercial maps - countries such
as Georgia are completely blank in Google Maps and Bing, for example, but are mapped in
detail with OpenStreetMap.

OpenStreetMap also provides publishers with additional strategic importance: The project
will probably never compete with publishers in the same way that commercial services are
doing and will continue to do. For example, publishers that are too-closely tied to a mapping
service provider could fall victim to changes in terms of service. And because publishers
using Newscoop 3.5 can choose between Google Maps and OpenStreetMap, their options
are open (this switching is enabled by a very cool open source project called Openlayers,
by the way).

Important: OpenStreetMaps' own site and base maps are not intended for large-scale map
tile serving; they'll actually throttle back heavy users. It's better to use a service like
Mapquest Open (Mapquest's own implementation of OpenStreetMap, at
http://open.mapquest.com) which is not limited. Mapquest Open is also supported out-of-
the-box in Newscoop as an option.

TEMPLATING AND MAPS

Requirements

In order to display maps, you must include jQuery in the header of your document, with a
link like this:

<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery
/1/jquery.min.js">

Displaying a Map within an Article

On the templating side, Newscoop's maps are quite easy to implement, relying on only a
couple of templating directives. Here is a simple example from "The Journal" template
package which includes a map inside the article-map.tpl sub-template:

1 {{ if Sgimme->article->has_map }}

2. {{ include file="set_thejournal/_tpl/article-map.tpl" }}

3. {{ else }}

4 {{ include file="set_thejournal/_tpl/_banner300x250.tpl" }}
5 {{ /if }}

In the code above we first validate if the current article has a map, and if so, we include the
template rendering the map. If the article does not have a map, we display an advertisement
instead.

Inside the article-map.tpl file included in the snippet above, there's a one-line directive:

{{ map show_locations_list="true" show_reset_link="Show initial Map" width="300
" height="250" }}

86

http://open.mapquest.com

This will display a 300px by 250px map, plus the text list of the locations (also called Points
Of Interest, or POI's), with a text link which, when clicked, resets the map to the position
the editor or journalist originally set.

Map:
San Francisco Center

New horizons for the browser

Sci/Tech

Test Persona
Palo Alto Center

ui alia viris consetetur eu.
Q Show initial Map

Semper laoreet abhorreant in his, pil\aley Berkeley /Grinaa 'K 4
quem incorrupte ne pri. Quo id % Oakland Danvile
offendit postulant, erat nonummy FraNASCOL panedaly gpn |San
fastidii ea sea, has te adhuc ipsum. Ius
diam rebum eirmod ea. Ne latine
labores quo, est quas dissentiunt ex, ei

I Daly Gty samy M
i Cranciscolbayy e

S Hayward
South San

Dubli

sed legimus intellegat assueverit. Id Francsco O Snaichy

electram forensibus definiebas his, San Mateo Fremont

percipit expetendis vix no. San Cartos Sl G
208 Hai” . Merio Park Voo Ao (i

Mioon 8
Eruditi scripserit vel no, in saepe N

startord
v By Teris orlse
nnscmam tihicie aui_Adam imnedit

The resulting map displays the list of points and the map with two points on it. The width
and height values used here are not mandatory; if not present, then the global values set in
Newscoop preferences are used. You can find more details on this in the chapter System
Preferences of the Newscoop 3 for Journdlists and Editors manual.

Listing Article Locations

In the previous example, you saw that it's possible to display the list of locations together
with the map, but it's a simple list. What if you want to display a list with some more data
about each location? You might need to publish that data even without displaying the
graphical map. For this purpose, Newscoop provides a special function list_article _locations.

We are now going to display a more detailed list of locations for the same article, with the
following code:

1. {{ map show_locations_list="false" show_reset_link="Show initial Map" wid
th="300" height="250" }}

2. {{ list_article_locations }}

3. {{ 1f $Sgimme->location->enabled }}

4. <p>

5. Location Name: {{ $gimme->location->name }}

6. Geo Position: {{ $gimme->location->longitude }},

7. {{ $gimme->location->latitude }}

8. Description: {{ $gimme->location->text }}

9. </p>

10. {{ /if }}

11. {{ /list_article_locations }}

And the output looks like this:

87

New horizons for the browser

SciTech
Test Persona

Qui alia viris consetetur eu.

Semper laoreet abhorreant in his,
quem incorrupte ne pri. Quo id
offendit postulant, erat nonummy
fastidii ea sea, has te adhuc ipsum. Ius
diam rebum eirmod ea. Ne latine
labores quo, est quas dissentiunt ex, ei
sed legimus intellegat assueverit. Id
electram forensibus definiebas his,
‘percipit expetendis vix no.

Eruditi scripserit vel no, in saepe
nusquam tibique qui. Agam impedit
instructior ne has, summo scaevola
electram qui at, legere repudiare est
at. Cu mel quot instructior, cu has
consul delenit senserit. Ei duo nihil

Show initial Map
Aameda g

=3 si
% $2504 Lea
Daly Ciy

- San
South SanFrancisco Bay,
(D! Francisco)

‘San Lon|

San Bruno
Pasiica
Burngams
Hilsoorougn San Mateo
Foster City

s
Beimont/41
§ o Dote - Tof15, I-URG

Location Name: San Francisco
Geo Position: -122.41042, 37.77493
Description: Quisque pulvinar sollicitudin orci.

Location Name: Palo Alto

Geo Position: -122.14302, 37.44188
Description: Nulla ac turpis id sem suscipit
malesuada.

ming soon in Newscoo

Geolocation was recently introduced with the release of Newscoop 3.5.0, so it is a relatively
new feature. It is already powerful, and will become even better as we get more feedback
from web developers. Important improvements are being developed for the upcoming
releases, most of them under the concept of Multi-maps.

Currently, when you are editing an article in the Newscoop administration interface you
have the option of adding a map, and then you can add as many locations (point of interests)
as you want. All those locations are stored in the database and can be displayed in article
pages, but only together with the article those points are related to.

The concept of multi-maps goes far beyond this. You will be able to set a map using several
different options, grouping multiple locations regardless of which articles they belong to. It is
called multi-maps because a single map will be able to display locations from multiple articles,
but also because in a single article you will be able to display multiple maps.

It will be possible to do advanced stuff by defining a map specifying, for example:

e from which articles you want to display locations, with all those points in a single map

e one or more topics, then Newscoop will find all articles connected to those topics
and display all the locations from those articles, again in a single map

e thearea (rectangle, polygon). Newscoop will look for all the locations matching this
criteria and they will be displayed in a map

It will be also possible to select a map, and then display the list of all the articles the
journalists have written corresponding to the locations in that map.

Sounds exciting? Actually, it is!

88

29 MANAGING MULTIPLE AUTHORS AND
ARTICLES

Newscoop has a built in author management tool in which you can create and edit author
accounts, with biographies, pictures and other information. You can also create different
kinds of author accounts, for photographers, translators, researchers or other contributors
- multiple authors can be assigned to a single article.

Managing multiple authors

Article

’ Lucian
Newscoop Marin

Article written by
multiple authors

Holman Douglas
Romero Arellanes

L W.F.

First name
Last name
Biography

The following sample code will explain how to print author information when displaying an
article. You can print an author's last and first name, their image URL, full name, author type
(photographer, etc.), their email address and biographical text.

{{ list_article_authors }}

<1li style="clear: left;">

{{ $gimme->author->last_name }}, {{ $gimme->author->firs
t_name }}

5. author->picture->imageurl }}" align="left" width="66

Bw N e

px">
6. {{ Sgimme->author->name }}
7. ({{ Sgimme->author->type }}):
8. author->email }}">{{ $gimme->author->email }}<
/a>
9. {{ S$Sgimme->author->biography->text }}
10. </1i>
11. {{ /list_article_authors }}
12.

89

30 SUBSCRIPTIONS, REGISTRATION AND
CONTENT ACCESS

Newscoop templates can be constructed in a way that they deliver content depending on
the status of the user (logged in or not) and their subscription (does the user have access
to this article, section, or language?)

If you decide to use subscriptions, this chapter explains how control access to the content,
and how to set up the registration process and forms. In a previous chapter we discussed
the strategy of using subscriptions in your publication. Further below, you can find a quick
introduction to managing subscriptions through the administration interface.

Using a subscription mechanism allows you to manage content access:

e Some content is accessible only to those users who are logged in
e An additional requirement for paid subscriptions may be that the reader has to have
a valid subscription for the content they are attempting to access

Journalists and editors then need to switch off the 'Visible to non-subscribers' option on
the article edit screen, in order to restrict access to the article.

CONTROLLING CONTENT AND FUNCTIONALITY ACCESS

You can check if the reader is logged in with $gimme->user->logged_in:

1 {{ if $gimme->user->logged_in }}

2. {{ include file="_tpl/article-comments.tpl" }}
3. {{ else }}

4 Register and log in to comment

5 {{ /if }}

You can check if the user has access to content with $gimme->article->content_accessible.
What you do with this information is up to you. You can still deliver the same content if
you want, or you can only deliver parts of it. Here are two examples to illustrate this. First,
truncate the article for readers who are not allowed access yet:

1. {{ if S$gimme->article->content_accessible }}

2. {{ include file="_tpl/article-fullcontent.tpl" }}
3. {{ else }}

4. {{ Sgimme->article->full_text|truncate:300 }}

5. Buy a subscription today to get full access!

6. {{ /if }}

Or display relevant information in classified ads to readers who have subscribed, like this:

1. {{ $Sgimme->article->ad_text }}
Contact:
2. {{ if $gimme->article->content_accessible }}
3. article->ad_email }}">{{ S$gimme->article->ad

_email }}
4. {{ else }}
Subscribe for contact information.
6. {{ /if }}

ul

90

REGISTRATION, LOGIN AND SUBSCRIPTION TEMPLATES

Your job gets much more complicated if you need to provide the entire functionality circle:

e Login option for your publication's existing subscribers

e Register option for new subscribers

e Account page for users to check or change their personal information, including
changing their password
Option to resend lost or forgotten passwords
Logout option

If you're also working with paid/trial subscriptions, it's not enough for the reader just to be
registered; they may be required to have a valid subscription to some, or all, sections or
publications. You will need to develop functionality which:

e ensures that the reader is able to choose what they want to subscribe to (which

language if more than one is available; which sections; which publications)
e gives the reader information on what they can choose, and what the price will be

Login and Registration Box

The first thing that a reader needs is the option to login or register. This can be displayed in
a box placed somewhere near the top of your publication's pages.

Register | Sign in: | wssrmame peeennes

=3
&

The Newscoop template for this is:

1 <div class="logintop">

2 {{ if ! $gimme->user->logged_in }}

3. {{ login_form submit_button="login" }}

4 <p class="fields"><a href="{{ uri options="template register.tpl"

}}">Register | {{ if $gimme->login_action->is_error }}{{ $gim

me->login_action->error_message }}!{{ else }}Sign in:{{ /if }}

5. <label for="uname"></label> {{ camp_edit object="login" attribute
="uname" html_code="value=\"username\"" }}

6. <label for="uname"></label> {{camp_edit object="login" attribute=
"password" html_code="value=\"password\"" }}

7. {{ /login_form }}</p>

8. {{ else }}<form><p class="fields">Welcome, <a href="{{ uri options="templ
ate register.tpl" }}">{{ S$Sgimme->user—>name }} | <a href="?logout=tru
e">logout</p></form>

9. {{ /if }}

10. </div><!-- /.login-top -->

This template will check to see if the user is already logged in, and if they are, it will display
'Welcome, <Full Name>', where Full Name is also a link to the page where the reader can
review their personal information. Also, an option for logging out is displayed.

Logging out works by generating a new URL parameter when the link is clicked:

logout

This will reload the current page, but the hook is in the _html-head.tpl template. When this
parameter in the URL is provided, the currently logged-in user is logged out. Here is the
code:

1. {{ if $gimme->url->get_parameter ('logout') == 'true' }}
2. <META HTTP-EQUIV="Set-Cookie" CONTENT="LoginUserId=; path=/">

91

3. <META HTTP-EQUIV="Set-Cookie" CONTENT="LoginUserKey=; path=/">
4. {{ Sgimme->url->reset_parameter ('logout') }}

5. <META HTTP-EQUIV="Refresh" content="0;url={{ uri }}">

6. {{ /if }}

Now, for some more serious stuff: If the user is not logged in, this template provides the
options for logging in or registering. Registering calls the register.tpl template (the same one
is used for modifying an existing reader's data).

Registration Template register.tpl

First, here's the whole code:

1. {{ if !$gimme->edit_user_action->defined && !$gimme->edit_subscription_ac
tion->defined }}
2. {{ include file="_tpl/user—form.tpl" }}
3. {{ /if }}
4.
5. {{ if $gimme->edit_user_action->defined && $gimme->edit_user_action->is_e
rror }}
6. <h5>Error registering your account: {{ $gimme->edit_user_action->erro
r_message }}</h5>
7. {{ include file="_tpl/user-form.tpl" }}
8. {{ /if 1}
9.
10. {{ if $Sgimme->edit_user_action->defined && $gimme->edit_user_action->ok }
}
11 {{ if S$gimme->edit_user_action->type == "add" }}
12. <h5>Your user account was successfully added. You will soon recei
ve a confirmation about how to access your subscription.</h5>
13. {{else }}
14. <h5>User data successfully added/modified</h5>
15. {{ /if }}
16. {{ /if }}

The code should be self-explanatory - it basically checks whether it should load the user

form immediately (if no previous action was taken, it means that the reader wants to
perform a new account registration), and additionally it checks to see if an error was
generated in the registration process. Finally, if the previous action was a successful

registration or account modification, the template will send the appropriate message.

Registration and Profile Form: user-form.tpl

The template called in the process of registration or account modification is user-form.tpl.
We're using a table in this case because it's faster to make, but you can create your own

CSS-based solution if you prefer:

1. {{ user_form template="subscription.tpl" submit_button="submit" }}

)

reate the subscription account.</p>

92

<p style="margin: 15px 0">Please fill in the following form in order to c

3. <table id="contact" cellspacing="0" cellpadding="0">
4. <tr>
5. <td><label for="contact-name">Full name:</label></td>
6. <td>{{ camp_edit object="user" attribute="name" html_code="cl
ass=\"tablefield widerone\" id=\"contact-name\"" }}</td>
7. </tr>
8. <tr>
9. <td><label for="contact-email">E-mail:</label></td>
10. <td>{{ camp_edit object="user" attribute="email" html_code="c
lass=\"tablefield widerone\" id=\"contact-email\"" }}</td>
11. </tr>
12. <tr>
13. <td><label for="contact-uname">Username:</label></td>

14. <td>{{ camp_edit object="user" attribute="uname" html_code="c
lass=\"tablefield widerone\" id=\"contact-uname\"" }}</td>

15. </tr>

16. {{ if ! $gimme->user->logged_in }}

17. <tr>

18. <td><label for="contact-password">Password:</label></td>

19. <td>{{ camp_edit object="user" attribute="password" html_code
="class=\"tablefield widerone\" id=\"contact-password\"" }}</td>

20. </tr>

21. <tr>

22. <td><label for="contact-passwordagain">Password (again):</lab
el></td>

23. <td>{{ camp_edit object="user" attribute="passwordagain" html
_code="class=\"tablefield widerone\" id=\"contact-passwordagain\"" }}</td
>

24. </tr>

25. {{ /if }}

26. <tr>

27. <td><label for="contact-city">City, Country:</label></td>

28. <td>{{ camp_edit object="user" attribute="city" html_code="cl
ass=\"tablefield widerone\" id=\"contact-city\"" }}</td>

29. </tr>

30. <tr>

31. <td><label for="contact-phone">Phone:</label></td>

32. <td>{{ camp_edit object="user" attribute="phone" html_code="c
lass=\"tablefield widerone\" id=\"contact-phone\"" }}</td>

33. </tr>

34. <tr>

35. <td><label for="second_phone">Phone (cell):</label></td>

36. <td>{{ camp_edit object="user" attribute="second_phone" html_
code="class=\"tablefield widerone\" id=\"second_phone\"" }}</td>

37. </tr>

38. <input type="hidden" name="SubsType" value="paid" />

</table>

39

40. <div id="submitformdiv">

41. {{ /user_form }}

42. </div>

43. {{ if Sgimme->user->logged_in }}<p style="margin: 15px 0"> To change your
password, go her
e</p>

44. {{ /if }}

This is the universal user form which, in the case of user registration, also includes fields to
define and double-check the user's password. In the other case, when a user is logged in

when submitting this form, it means that the user is modifying their data and not creating a
new user. The option for changing the password is then offered in a separate template (so

as not to mess with changing the other data).

After registering or modifying the data, the user is redirected to the subscribe.tpl template,

where the final step of creating or changing the subscription is performed.

In this example we are presuming that your publication intends to work with paid
subscriptions, so we have one hidden parameter:

<input type="hidden" name="SubsType" value="paid" />

You can change it to work with trial subscriptions as well. Or, you can create a drop-down

menu so the reader can choose what sort of subscription they wants to have:

1 Subscription type:

2 <select name="SubsType">

3. <option value="trial">Trial</option>
4 <option value="paid">Paid</option>

5 </select>

93

Please note that this Newscoop functionality isn't payment processing; it is for the system's
internal purposes to determine whether or not the reader is subscribed to the content.
Action is required from the site's staff to approve or decline the subscription, based on the
reader's payment data.

Subscription Areas: subscription.tpl

The final step in this process, after creating a new user, is to define the content the user is
interested in registering for. In Newscoop, publishers can set different prices for different
languages, sections, or publications, and you can offer potential subscribers either a global
publication subscription, or subscription by sections.

But before offering these forms, you need to check if everything went well, or if there were
some errors... So here is the subscription.tpl template:

1. {{* no user form submitted, no subscription form submitted: display the u
ser form *}}
2. {{ if !'$gimme->edit_user_action->defined
3. && !S$Sgimme->edit_subscription_action->defined }}
4. {{ include file="_tpl/user-form.tpl" }}
5. {{ /if }}
6. {{* user form submitted with errors: display the error and the user form
*1}
7. {{ if S$Sgimme->edit_user_action->defined
8. && $gimme->edit_user_action->is_error }}
9. <h5 style="margin-bottom: 20px">There was an error submitting t
he account creation form:
10. {{ $gimme->edit_user_action->error_message }}</h5>
11. {{ include file="_tpl/user-form.tpl" }}

12, {{ /if }}
13. {{* user form submitted ok: display the subscription form *}}

14. {{ if Sgimme->edit_user_action->defined
15. && $gimme->edit_user_action->ok }}
16. {{ include file="_tpl/subscription-form.tpl" }}

17. {{ /if }}

18. {{* subscription form submitted with errors: display the error and the su
bmit form *}}

19. {{ if $gimme->edit_subscription_action->defined

20. && S$gimme->edit_subscription_action->is_error }}

21. <p style="margin: 15px 0">There was an error submitting the sub
scription form:

22. {{ $gimme->edit_subscription_action->error_message }}</p>

23. {{ include file="_tpl/subscription-form.tpl" }}

24, {{ /if 1}

25. {{* subscription form submitted ok: display success message *}}

26. {{ if Sgimme->edit_subscription_action->defined

27. && S$gimme->edit_subscription_action->ok }}

28. <p style="margin: 15px 0">Your subscription was created success
fully.</p>

29. {{ /if 1}

The subscription form itself:

1. {{ subscription_form type="by_ section" total="Total" template="subscripti
on.tpl" button_html_code="class=\"submitbutton\"" }}

2. <table class="userform">

3. <tr>

i

<th colspan="2">Please fill in the following form in order to
create the subscription.</th>
</tr>
<tr>
<td colspan="2">
Subscription time:
{{ $gimme->publication->subscription_time }} {{ S$gimme->p
ublication->subscription_time_unit }}

0 oy Ul

94

10. </td>

11. </tr>

12. <tr>

13. <td colspan="2">

14. {{ camp_select object="subscription" attribute="alllangua
ges" }}

15. Subscribe to all languages

16. </td>

17. </tr>

18. <tr>

19. <td>Languages:</td>

20. <td>{{ camp_select object="subscription" attribute="languages
"1}

21. </tr>

22. <tr>

23. <td colspan="2">Sections</td>

24. </tr>

25. {{ list_sections }}

26. <tr>

27. <td colspan="2">

28. {{ camp_select object="subscription" attribute="s
ection" }}

29. <input name="tx_subs{{ $gimme->section->number }}
" type="hidden" value="{{ $gimme->publication->subscription_time }}">

30. {{ Sgimme->section->name }}

31. </td>

32. </tr>

33. {{ /list_sections }}

34. </table>

35. {{ /subscription_form }}

All subscription options (price, time, time unit, currency...) are set on the Publication
configuration page in Newscoop's administration interface (you can find it in Content ->
Publications, then choose the wrench-and-screwdriver 'Configure' icon)

Subscription defaults
Time Unit: | months El
Paid subscriptions
Currency: |EUR
Time unit cost per one section:

- one language: | 9.95
- all languages: | 29.95

Default time period: |12 time units

Trial subscriptions

Default time period: |1 time units
Set subscription settings by country

Then on the section level, you can decide to Add section to all subscriptions or to Delete
section from all subscriptions.

95

The following user-chgpass.tpl template is only used to change existing Newscoop readers'

passwords.
1. {{ user_form submit_button="submit" template="register.tpl" }}
2. <table id="contact" cellspacing="0" cellpadding="0">
3. <tr>
4, <td><label for="contact-passowrd">Password:</label></td>
5. <td>{{ camp_edit object="user" attribute="password" html_code
="class=\"tablefield widerone\" id=\"contact-password\"" }}</td>
6. </tr>
7. <tr>
8. <td><label for="contact-passowrdagain">Password (again) :</lab
el></td>
9. <td>{{ camp_edit object="user" attribute="passwordagain" html
_code="class=\"tablefield widerone\" id=\"contact-passwordagain\"" }}</td
>
10. </tr>
11. </table>
12. <div style="margin: 15px 0;">
13. {{ /user_form }}
14 </div>

After changing the password, this template redirects the reader back to the register.tpl
template.

At this point, you might be asking yourself: "Why the hell is the closing tag for the
user_form set inside the div?" Put down your laser blaster nice and slow, and we'll explain:
It's because the closing tag defines the position of the submit button.

96

3 |. BROWSER DETECTION AND ROBOTS
(SEARCH ENGINES)

For advanced web design, it is helpful to know more about the browser where the site is
being displayed. You can also detect if your pages are being grabbed by a search engine
robot, and deliver content accordingly. For example, if you are using a subscription model
for your publication, you can display more information to the search engine robot than you
would to an anonymous reader. This way, the search engines will list your content more
descriptively than if they only grabbed the "please subscribe" page.

This chapter will give you some ideas on how to detect the client browser, or search engine
robot, and change your templates accordingly. The template reference at the end of this
Cookbook provides all the options for the browser object.

This is the kind of information Newscoop can get from a browser or robot:
iPhone browser

Browser: safari, version 528.16 | Engine: webkit, version 528.18
Mobile: device: iphone | OS: iphone os | OS version: 3.0

Bot: no

Type: mobile = handheld

Google Chrome browser

e Browser: chrome, version 10.0.648.205 | Engine: webkit, version 534.16
e Mobile: no

e Bot: no

e Type: bro = normal browser

Firefox browser

e Browser: firefox, version 3.6.16 | Engine: gecko, version 1.9
o Mobile: no

e Bot: no

e Type: bro = normal browser

Google robot

® Browser: googlebot, version 2.1 | Engine: false, version false
e Mobile: no

e Bot:yes

e Type: bot = web bot

THE EASY CSS WAY: CLASSES IN THE BODY TAG

An easy way to deliver different styles to different browsers is to add classes to the body
tag, and then apply changes using CSS. Here some examples of the information you can
print in the body tag with Newscoop:

iPhone 3

97

1. <body class="webkit mobile safari iphone iphoneos iphoneos3 iphoneos3-0 s
afari528 safari528-16" >

Firefox 3.6.16

<body class="moz bro gecko firefox firefox3 firefox3-6 firefox3-6-16 geckol geck
ol-9" >

Internet Explorer 8

<body class="ie bro msie msie8 msie8-0 trident" >

Google Bot 2.1

<body class="google bot googlebot" >

Chrome 10.0.648.205

<body class="webkit bro chrome chromel0 chromel0-0-648-205" >

You can get these rich body tags using the following code snippet. Note: {{ textformat
wrap=200 }} is used in this example to list all the classes in one line and avoid line breaks.
The first line break would be applied after 200 characters - which is beyond what this code
will deliver. Throw out what you don't need. You could also place the template in a separate
file and use {{ include }}.

1. <body class="{{ textformat wrap=200 }}
2. {{ Sgimme->browser->browser_working }}
3. {{ $gimme->browser->ua_type }}
4. {{ Sgimme->browser }}
5. {{* mobile device / 0S *}}
6. {{ S$gimme->browser—>mobile_data.0 }}
7. {{ $gimme—>browser—->mobile_data.3|regex_replace:"/\ /":"" }}
8. {{ strip }}{{ $gimme->browser->mobile_data.3|regex_replace:"/\ /":"" }}
9. {{ Sgimme->browser—>mobile_data.4|regex_replace:"/[\.]1[0-9]*/":"" }}{{
/strip }}
10. {{ strip }}{{ $Sgimme->browser->mobile_data.3|regex_replace:"/\ /":"" }}
11. {{ $gimme->browser->mobile_data.4|regex_replace:"/\./":"-" }}{{ /strip
b}
12. {{* firefox / gecko *}}
13. {{ Sgimme->browser->moz_data.0 }}
14. {{ strip }}{{ S$Sgimme->browser->moz_data.0 }}
15. {{ $gimme->browser->moz_data.l|regex_replace:"/[\.]1[0-9]*/":"" }}{{ /st
rip }}
16. {{ strip }}{{ $gimme->browser->moz_data.0 }}
17. {{ $gimme->browser->moz_data.l|regex_replace:"/[\.][0-9]*$/":"" |regex_r
eplace:"/\./":"-" }}{{ /strip }}
18. {{ strip }}{{ $gimme->browser->moz_data.0 }}
19. {{ $gimme->browser->moz_data.l|regex_replace:"/\./":"-" }}{{ /strip }}
20. {{ if S$Sgimme->browser->browser_working == "moz" }}
21. gecko{{ S$gimme->browser->moz_data.2|regex_replace:"/[\.][0-9]*/":"" }}
22. gecko{{ $gimme->browser->moz_data.2|regex_replace:"/\./":"-" }}
23. {{ /7if }}
24. {{* internet explorer *}}
25. {{ if Sgimme->browser->browser_working == "ie" }}
26. {{ strip }}{{ $gimme->browser->browser_name }}
27. {{ $gimme->browser->webkit_data.2|regex_replace:"/[\.][0-9]*/":"" }}{
{ /strip }}
28. {{ strip }}{{ $gimme->browser->browser_name }}
29. {{ $gimme->browser—->webkit_data.2|regex_replace:"/\./":"-" }}{{ /stri
p }}
30. {{ 1f $gimme->browser->webkit_data.2 > 8 }}chakra{{ else }}trident{{
/if }}
31. {({ /if }}
32. {{* chrome *}}
33. {{ if $gimme->browser->browser_working == "webkit" }}
34. {{ strip }}{{ $gimme->browser->webkit_data.0 }}

{{ Sgimme->browser—->webkit_data.l|regex_replace:"/[\.][0-9]*/":"" }}{
{ /strip }}

{{ strip }}{{ $gimme->browser->webkit_data.0 }}
{{ Sgimme->browser->webkit_data.l|regex_replace:"/\./":"-" }}{{ /stri
p }}
{{ /if }}

{{ /textformat }}" >

FULL TEMPLATE CONTROL: BROWSER_DETECTION.TPL

To collect the information listed at the beginning of this chapter, you can use the sub-
template browser_detection.tpl. It should be called in the header of your pages, and will
return a set of variables that make it easy to manage your templates for different browsers
or robots. Here is the code for browser_detection.tpl:

N

12.
13.
14.
15.
17.

18.

{{* gecko / flrefox ***********************************}}
{{ if Sgimme->browser->browser_working == "moz" }}

{{ assign var="browserdetect_name" value='$gimme->browser->moz_data.0"
b}

{{ assign var="browserdetect_version" value='$gimme->browser->moz_data.
1" 1}

{{ assign var="browserdetect_engineversion" value='$gimme->browser->moz
_data.2" }}

{{ assign var="browserdetect_engine" value="gecko" }}

{{ /if }}
{(* Webklt / Chrome / Safari ***********************************}}
{{ if Sgimme->browser->browser_working == "webkit" }}

{{ assign var="browserdetect_engineversion" value="$gimme->browser->bro
wser_number” }}

{{ assign var="browserdetect_name" value='$gimme->browser->webkit_data.
0" 1}

{{ assign var="browserdetect_version" value='S$gimme->browser->webkit_da
ta.l” }}

{{ assign var="browserdetect_engine" value="webkit" }}

{({ /if }}
{{* ie / internet exploI-er ***********************************}}
{{ if S$Sgimme->browser->browser_working == "ie" }}

{{ assign var="browserdetect_name" value='$gimme->browser—->browser_name

}}

{{ assign var="browserdetect_engineversion" value="$gimme->browser->web
kit_data.2" }}

{{ assign var="browserdetect_version" value='Sgimme->browser->webkit_da
ta.2” }}

{{ if S$gimme->browser->webkit_data.2 > 8 }}

{{ assign var="browserdetect_engine" value="chakra" }}
{{ else }}
{{ assign var="browserdetect_engine" value="trident" }}

{{ /if }}
({ /if }}
({* bot / Search engine ***********************************})
{{ if Sgimme->browser—>ua_type == "bot" }}

{{ assign var="browserdetect_name" value='$gimme->browser->browser_name

}}

{{ assign var="browserdetect_version" value="$gimme->browser->browser_m
ath_number® }}

{{ assign var="browserdetect_engine" value="false" }}

{{ assign var="browserdetect_engineversion" value="false" }}
{{ /7if }}
{{* mobile deViCeS **}}
{{ if Sgimme->browser->ua_type != "mobile" }}

{{ assign var="browserdetect_mobile_device" value="false" }}

{{ assign var="browserdetect_mobile_os" value="false" }}

{{ assign var="browserdetect_mobile_os_number" value="false" }}
{{ else }}

{{ assign var="browserdetect_mobile device" value='$gimme->browser->mob
ile_data.0" }}

99

40.

41.

42.

{{ assign var="browserdetect_mobile_os" value="$gimme->browser—->mobile_
data.3" }}

{{ assign var="browserdetect_mobile_os_number" value='$gimme->browser->
mobile_data.4' }}
{({ /if }}

Save the code snippet above inside the _tpl folder of your template package. If you are
using "The Journal" template pack, include it like this:

{{ include file="set_thejournal/_tpl/browser_detection.tpl" }}

If your template package has a different name, adjust the path accordingly. After the
template has been called, the information about the browser listed earlier can be displayed
by these lines:

© 0 oy Ul

Browser: {{ S$browserdetect_name }}, version {{ Sbrowserdetect_version
H}

| Engine: {{ $browserdetect_engine }}, version {{ $browserdetect_engineve

rsion }}</1i>

Mobile: {{ if S$browserdetect_mobile_device == "false" }}no{{ else }}

device: {{ $browserdetect_mobile_device }} |

0S: {{ S$browserdetect_mobile_os }}

OS version: {{ S$browserdetect_mobile_os_number }}

{{ /if }}</1i>

Bot: {{ if $gimme->browser->ua_type == "bot" }}yes{{ else }}no{{ /if

}I</1i>

Type: {{ $gimme->browser->ua_type }} =

{{ 1f $gimme->browser->ua_type "bot" }}web bot{{ /if }}

{{ if S$Sgimme->browser->ua_type == "bro" }}normal browser{{ /if }}

{{ 1f $gimme->browser->ua_type == "bbro" }}simple browser{{ /if }}

{{ if Sgimme->browser->ua_type "mobile" }}handheld{{ /if }}

{{ if Sgimme->browser->ua_type "dow" }}downloading agent{{ /if }}

{{ 1f $gimme->browser->ua_type == "1lib" }}http library{{ /if }}

</1li>

100

32 MOBILE DEVICE DETECTION AND
TEMPLATES

This chapter will give you a quick start into delivering different content to different devices,
such as mobile phones. In the chapter on Browser detection and robots (search engines), you
will find a more in-depth introduction. The template reference at the end of this Cookbook
lists all options for the browser object.

Delivering content to mobile devices is becoming an increasingly important issue for web
developers. Whereas devices like tablets handle normal websites well, the majority of
mobile phone users benefit from custom templates, delivering content for smaller screens.

Some design issues can be handled using the media="handheld" versus media="screen"
property in the link tag:

1. <link rel="stylesheet" type="text/css" href="...mobile.css" media="handhe
14a"/>

2. <link rel="stylesheet" type="text/css" href="...screen.css" media="screen
"/

However, it is more elegant to serve custom pages for different devices. Among other
factors, the amount of data downloaded can be reduced if you don't deliver parts of your
page which are not meant for mobile devices - rather than just "hiding" them with CSS.

Here a simple example of how Newscoop can display a sidebar on the page, but only if the
client does not use a mobile device:

1. {{ if S$gimme->browser—->ua_type != "mobile" }}
2. {{ include file="set_setname/_tpl/sidebar.tpl" }}
3. {{ /if }}

Change the path of the included file to match your template package. You can use the same
logic for calling CSS files in the header:

1. {{ if $gimme->browser->ua_type == "mobile" }}
<link href="http://{{ $gimme->publication->site }}/templates/set_thej

ournal/_css/mobile.css" media="handheld" rel="stylesheet" type="text/css"

>

3. {{ else }}

4. <link href="http://{{ $gimme->publication->site }}/templates/set_thej
ournal/_css/style.css" media="handheld" rel="stylesheet" type="text/css"
>

5. {{ /if }}

N

If you want to deliver content more specifically for different browsers on mobile devices,
read the chapter on browser detection. This will enable you, for example, to display links to
you iPhone App only if the device is an iPhone. In a similar manner, you can handle media
for different browsers as well. For instance, if the device does not support Flash, don't
display the Flash player, but a link to the file.

Note: there might be issues with caching systems. If you encounter a problem with
browser detection when testing your Newscoop site, switch off the cache and see if that
fixes the problem.

101

e Coming soon in Newscoop

A Mobile Browser Plugin is in development, which will give you more detailed
information like the size of the display on the client side, allowing for even better control.

102

33 TAG CLOUDS USING TOPICS

A tag cloud is a collection of words in one place, a depiction of the text content of your
publication. Normally, tags are listed alphabetically, and the importance of each tagis shown
with font size or colour. To make a tag cloud in Newscoop, we can use topics and sub-
topics. First, you will need to create a list of Newscoop sub-topics, having the parent topic

‘tagcloud":

TN

e

O O i | YO ot D
BB B EEBEBEEE

PP > > (> > > P

IR IR AR IR AR IR IR

»
%

'E
3

j—y
o

b2

L A S = T o A O S A T O % T
<<<<<<<<<I

<

<

ru

ru

ru

ru

ru

ru

ru

ru

ru

ru

ru

tagcloud

OfNaKo Taroe
paHEHME
- MOWEHHMYECTED
pnewmot
AR
-~ cRAT
HIpYLIMTENE
poHTPaGEHAS
WEZHACMNOESHME

" AEHBM

Then, you will just need to attach the required sub-topics to an article:

Topics 9 attach

J Ofnako
T3roe / hoTo kd

S Ofinako
Teroe / Ed

SKONariA

S Oonako
TIMOE / SKLMK X/

J Ofnako
TIr0E [
EpecTtckas
ofnacTe

J Ofnako
T3roe / Biaeo ki

103

Then, you need to create a Tag Cloud template. Please note that this template will be doing
a lot of listings, so it might be a good idea to put it a cron job to produce the output, and
place the result in a file for further inclusion from other templates.

The first thing to do will be to list all sub-topics (tags) of the main topic 'tagcloud' and get
minimum and maximum numbers of articles having each topic. Also, we need to set up
font-size ranges for the output:

W oUW N

i
i
i
i
i
{{
8
{{

{{

{{
i

i
{{

local }}
unset_issue }}
unset_section }}
unset_article }}
unset_topic }}
set_topic name="tagcloud:en" }}
assign var="first good_tag" value=true }}
list_subtopics }}
{{ assign var="posts_count" value="0" }}
{{ list_articles ignore_issue="true" }}
{{ assign var="posts_count" value=$gimme->current_list->count }}
{{ /list_articles }}
{{ if $posts_count > 0 }}
{{ if $first_good_tag }}
{{ assign var="min" value=$posts_count }}
{{ assign var="max" value=$posts_count }}
{{ assign var="first_good_tag" value=false }}
{({ /if }}
{{ if $posts_count > $max }}
{{ assign var="max" value=S$posts_count }}
{{ /7if }}
{{ i1f Sposts_count < $min }}
{{ assign var="min" value=$posts_count }}
{{ /if 1}
{{ /if 1}
/list_subtopics }}

assign var="minSize" wvalue="90" }}
assign var="maxSize" value="240" }}

assign var="diff max_min" value=""S$max-$min'" }}
assign var="diff maxSize_minSize" value="" $maxSize-SminSize " }}

Next, we create the actual output. List sub-topics, get articles having each sub-topic, and
assign the number of times the sub-topic was used:

d oUW N

<ul class="tag-cloud">

i

list_subtopics }}
{{ assign var="posts_count" value="0" }}
{{ list_articles ignore_issue="true" }}
{{ assign var="posts_count" value=$gimme->current_list->count }}
{{ assign var="tag_name" value=$gimme->topic->name }}
{{ /list_articles }}

Then we calculate font size for the sub-topic in the tag cloud:

w N

~J o U1

{{

s

13
{{

if $posts_count > 0 }}
{{ if $min == S$max }}
{{ assign var="fontSize" value="'$diff maxSize_minSize/2+$minSize

b}

{{ else }}
{{ assign var="a" value=""$posts_count-S$min'" }}
{{ assign var="b" value=""$a/$diff_max_min " }}

{{ assign var="fontSize" value=""$b*$diff _maxSize minSize+$minSize "

/if }}

And finally output the result:

104

[

s_based_on_topic.tpl&tag={{ S$tag_name }}" title="{{ Sposts_count

les having topic {{ S$tag_name }}">{{ S$tag_name }}
</1li>

{{ /if }}

{{ /list_subtopics }}

{{ /local }}

~ oUW

2. <a href="/?tpl=special_template_to_list_article

}} artic

As a result, you should get a Tag Cloud like the following screenshot:

Blie0 paHEHWME MOWEHHKMYECTED QNEWMOD
HapkoTikn OBAT HapywuTene KOHTpaGaHAa
aeHern BpecTckand obnacTe

HECHRCTHEIN Chy<al NOMEp nynesad cTpensSa
raHafon KUK GnaroTeopuTensHocTe

KWHOBRECT 3konoriA TRaHCNopT Jaqnuean
Cepred Hanelid Benapyck BeHswH EMHOA(MWE
NOAWTHER ONNOZMUMA nNeHoWa LUeHEl

EpeCT MNPAEMTENECTED KpWaic COOPT

dryTHon OﬁLL{ECTB'D ofndcnonkom Cymap
O0pas0EAHME KWMBE SSPNNaTa COERE yomyr
Toproena KOHQHET

NPOUCLLECTBUA muniumA
mMYC w8 [AK POBA vBuwiActes T
kpaxs MPOKVRETYRDE coyh oceop
yTonnenve NOMPAHKYHAaA cryba
TAMCHHA KyNETYPa kuHo eoicTaska (POTO
nyMAHKMA sHamednTocTH 3AKOHOMWEA
CIJMHaHCbl NPOMSEOACTED A3MA

Tag cloud created using topics

105

34 DYNAMIC PAGE LAYOUTS

In this chapter, you'll learn how to create dynamic page layouts that change automatically
when a staff user clicks on a check box on the Article Edit page.

The example we show here features an Article Type with a custom switch 'breaking news'.
This custom switch can be added to the Article Type in the Newscoop administration
interface. The journalist or editor then sees a checkbox for 'breaking news' in the Article
Edit screen, which they will click whenever they consider the story they are working on to
be particularly important.

The result of a staff user clicking this checkbox can be detected in the template. Inside
list_articles a constraint is added, collecting only articles where the custom switch called
'breaking_news' is turned on. If there's an article that fulfills that criteria, then it's listed. If
not, the layout remains the same:

{{ list_articles length="1" ignore_section="true" order="bypublishdate desc" co
nstraints="breaking news is on" }}

That tells $gimme to list one article with the following constraints:

e Display articles regardless of the section they're in

® Present the articles in descending chronological order according to their published
date

e Only display articles where the "breaking_news" custom switch is on

The whole template looks like this:

1. {{ list_articles length="1" ignore_section="true" order="bypublishdate de
sc" constraints="breaking_news is on" }}
2. <div id="breakingNews">

3. <h3>{{ Sgimme->article->name }}
</h3>

4. {{ list_article_images length="1" }}

5. <div id="breakingNewsLeft">

6. ar
ticle->image->description }}" />

7. <p class="footnote">{{ $gimme->article->image->description }} {{

if $gimme->article->image->photographer }} (Photo: {{ $gimme->article->ima
ge->photographer }}) {{ /if }}</p>

8. </div>

9. {{ /list_article_images }}

10. {{ 1f $gimme->prev_list_empty }}

11. <div id="breakingNewsLeft">

12. language->co
de }}.Jjpg" alt="Breaking news" />

13. </div>

14. {{ /if }}

15. <div id="breakingNewsCenter">

16. {{ Sgimme->article->publish_date|camp_date_format:"%M %e, %Y" }}

17. <p>{{ $gimme->article->deck }}</p>

18. </div>

19. </div>

20. {{ /list_articles }}

For more on using custom switches, see the chapter titled Topics, switches, keywords to
structure content.

106

35 WORKING WITH IMAGES

It's an understatement to say that images are crucial to news organizations. Because of their
central role, Newscoop has a powerful and user-friendly media archive for storing,
retrieving and reusing images in the administration interface. Newscoop's template language
can access images in a number of different ways, and the output can be sent to web pages,
to jQuery slideshows or other channels (see the chapter Image galleries with jQuery for more
on that).

In this chapter, we'll look at how Newscoop templates work with images, image attributes
and metadata. According to the Newscoop template reference, "The image object is usually
initialized inside a list of article images or a list of images. It is not initialized at the beginning of
the template and cannot be initialized by other Newscoop functions." In other words,
images must be used through lists or through articles.

You can make use of images through the article object, like when the current article has one
or more images attached. One more place where you can use an image object is with author
objects. We'll go into these options in detail below. What you can't do at this point is use an
image object as a single isolated element, because it has to be set first by any of the means
mentioned above.

DISPLAYING AN ARTICLE IMAGE

Let's start with a simple example. You have an article with only one image, and you want to
display the image when the article is requested.

You can point to an image in two ways, either:

article->imagel->imageurl }}" alt="{{ Sgimme->article->imag
e->caption }}" />

or:

article->image->caption }
}H />

The following code snippet does more, it:

e Gets the URL for an image attached to an article

e Puts the image caption (the description) into the ALT tag
e Puts the photo description into the title tag

e Displays the photographer's name

e Displays the image caption (the description)

1 article->image->imageurl }}"

2. alt="{{ Sgimme->article->image->caption }}"

3. title="{{ Sgimme->article->image->description }}" />

4 by {{ $gimme->article->image->photographer }}

5 {{ Sgimme->article->image->description }}

An example of what similar code looks like in the browser is below (taken from the "The
Journal" template pack):

107

Sibling bottles
Photographer: Sourcefabric

You can even validate whether the article has an image or not. The value passed in
parentheses correspond to the image number you assign to the image when attaching it to
the article.

1. {{ if Sgimme->article->has_image (1) }}
2. article->image->imageurl }}" />
3. {{ /if }}

It's also possible to access the image directly by the index number. If an image with that
given index does not exist, then an empty image object is returned, and nothing will be
displayed. It is good practice to first validate whether the requested image exists or not, but
you already know how to do that!

|article->image5->imageurl }}" />

There are more image properties you can display; we've already used some like imageurl,
photographer and description, but there'll be more in the following examples. You can read
the entire list in the chapter Template Objects -> Image of the Newscoop Template
Reference.

LISTING ALL IMAGES ATTACHED TO AN ARTICLE

This is basically the same as we did before, but within a list of article images. Let's see some
code:

1. {{ list_article_images }}

2.

3. article->image->imageurl }}" />

4. Caption: {{ $Sgimme->article->image->caption }}

5. By: {{ S$Sgimme->article->image->photographer }}

6. </1li>

7. {{ /list_article_images }}

There's no need to use image indexes, because the list provides iteration over all images
attached to the article.

LISTING IMAGES FROM THE MEDIA ARCHIVE

Now the fun begins :-)

108

You already know how to work with image objects and how to list images attached to
articles; this is very useful and will allow you to use image content all over your site.

But in specific cases you'll probably want to display images not necessarily related to articles.
Remember that Newscoop provides a Media Archive (read more about it in the Newscoop 3
for Journdlists and Editors manual), and every image you attached to an article is stored there.

The Newscoop template language provides a function to build lists of images according to
different criteria. Let's say you want to build a list of images from a specific photographer.
This code snippet can:

e Get a list of images where the photographer name is John Doe
e Order the images by the last update

e Get the images themselves based on their URLs

e Get the image captions (descriptions)

1. {{ list_images photographer=" John\ Doe" order="byLastUpdate" }}
2. image->imageurl }}" />

3. <p>{{ $gimme->image->description }}</p>

4. {{ /list_images }}

Now here's list of images where the string "Prague" is present:

{{ list_images caption_like="Prague" order="byPhotographer" }}
image->imageurl }}" />

<p>{{ $gimme->image->caption }}</p>

{{ /list_images }}

1
2.
3
4

There are many other criteria you can use. A detailed list can be found in the Newscoop
Template Reference in the List Images chapter.

THUMBNAILS

Newscoop automatically generates a 64-pixel-wide thumbnail for every image when the
image file is uploaded into the Media Archive. Displaying a thumbnail is as easy as this:

|image->thumbnailurl }} />

AUTHOR PICTURE

The author object has the property picture, which is an image object, so that you can use it
exactly as an article image. There's more on this in the chapter Managing multiple authors and
articles in this Cookbook.

SCALING IN PERCENT AND ABSOLUTE SIZE

Images in Newscoop are only stored in two different sizes: the original size and the
automatically generated thumbnail. Usually it is necessary to display those images in a
different size than those two available, so Newscoop provides a simple way to do this on
the fly:

image->imageurl }}&ImageRatio=70" /> |

Here we just specified a ratio equal to 70, which means the image will be resized to 70
percent of its original size. You also have the option to provide an specific width or height
value.

109

image->imageurl }}&ImageWidth=350&ImageHeight=310" />

Any image provided by $gimme can be scaled as shown above, including the thumbnail and
author pictures. The logic of how Newscoop processes the values when both width and
height are provided (and even the ratio) at the same time is explained, with more examples,
in the wiki page: http://wiki.sourcefabric.org/x/c4EH

110

http://wiki.sourcefabric.org/x/c4EH

36 PAGINATION OF LISTS AND LONG
ARTICLES

Pagination means dividing content into discrete pages, each displaying a page number. When
a long list of search results is divided into more than one page, allowing the reader to
proceed from page to page, that's pagination.

In this chapter, you will learn an advanced method for list pagination, and how to use
subtitles to break up long articles.

PAGINATION OF A LONG ARTICLE LIST

Sometimes you might want to split a long list of articles into pages. You might do this on
Section pages to show all articles in that particular section, without requiring the reader to
scroll down too much.

To implement pagination we need to add an extra page parameter to a URL, something like
the following example:

http://site_name/language_code/issue_number/section_number/?page=number

Then we can use the GET parameter to check the page we are on. We will use Smarty
directly to check GLOBAL variables:

{{ if S$smarty.get.page }}{{ assign var="page" value='$smarty.get.page’ }}{{ els
e }}{{ assign var="page" value="1" }}{{ /if }}

To split a list of articles into pages we will use a column parameter, which will control how
many articles should be shown on a page. In this case, row parameter will be the actual page.

{{ if Sgimme->current_list->count > 10 }}

{{ if Sgimme->current_list->row == S$page }}

In this example, we also need to add the ignore_issue parameter to get articles from all
issues. The first part of the code, which will show the articles, would be:

1. {{ if $smarty.get.page }}

2. {{ assign var="page" value= $smarty.get.page }}{{ else }}{{ assign va
r="page" value="1" }}{{ /if }}

3. {{ list_articles columns="10" ignore_issue="true" }}

4. {{ if $gimme->current_list->row == S$page }}

5. <div class="list-articles">

{{ Sgimme->article->name }}{{ $gimme->article->intro }}</div>
6. {{ /7if }}
7. {{ /list_articles }}

In the second part of the code we will show page numbers, and add the page parameter to
links. To do this, we will need to list the articles once again:

{{ list_articles columns="10" ignore_issue="true" }}
{{ if S$gimme->current_list->count > 10 }}
{{ if S$gimme->current_list->at_beginning }}
<div class="list-page-numbers">Page:
({ /if }}
{{ if S$gimme->current_list->column == 1 }}

oy Ul s W N

{{ 1f $gimme->current_list->row == $page }}
{{ $gimme->current_list->row }}
{{ else }}
current_
list->row }}">{{ S$gimme->current_list->row }}
{{ /if }}
{{ /if }}
{{ if Sgimme->current_list->at_end }}
</div>
{{ /7if }}
{ /if)}
{{ /list_articles }}

You will now have a list of articles and a list of page numbers, as shown in the screenshot
below. You are free to add additional styles and controls to make your list shine.

Konbki npauarHyLiLa xagxsHHI Na BaMnioTHBX NakyTax
Skaouika 1
Y acnBHe 3fMEHHLY MyHITax KpaiHB! MOXHE FBaukilys 36'ABK, af AKiX Ml NACNBAI 50 aEskHYUE

"BanoTel HAma". ABcanoTHyr Bonbwacye MRaMaAIAN WKSEILR, U CTEHE 3 LATaM Yacy Takix 36'af
Gosew

Humage YBeCE SpTEIKL

KiwaHak ankassaub 3a ynany
IKaHoMiKA -
Mepwsl A3eHs BACHBI Ha BENGYCI A3HAMEHABATCA SAMEHAN A3ANETHArE PITYIABAKHA L3H HA TABAPSI

33 BUKMIOYIHHEM T383paY (pABOT, NACAyr), AKIA JEaRUA ¥ CNic Tulx, L3HATTEAPIHHE Ha AKIA By 438
na \JJIIEnI_-ﬂ“y IHANOL iL\uG Naa A3ApEKAMTRONEIA,

ErTaLE YEECE ADTHIKYN

Kaserrapoy: (1)

Crapon

B : 3 4 5 &

SUBTITLES INSIDE LONG ARTICLE FIELDS

You can include subtitles (also known as subheads) in longer articles, to break the article
into pages. The journalist uses the WYSIWYG editor, marks the subtitle in the text and
selects "campsite_subhead" from the pulldown menu under "styles". A simple list of all
subtitles inside the article can be displayed on the article page like this:

1
2
3.
4
5

{{ list_subtitles field name="full_text" }}
{{ Sgimme->subtitle->name }}</1i>

{{ /list_subtitles }}

Note that inside list_subtitles you need to specify the article field which you are working
with, in this case the field full_text. The subtitles listed will all be from this particular article
field, rather than any other field that may contain subtitles.

Adding a simple "previous” and "next" navigation from article subtitle to article subtitle can
be done like this:

112

N

0w ~J oy U W

{{ 1f $gimme->article->full_text->has_previous_subtitles }}
Previous
{{ else }}
Previous
{ /if)}
|
{{ 1f $gimme->article->full_text->has_next_subtitles }}
Next

9. {{ else }}
10. Next
11. {{ /if }}

This navigation will display active links to "Previous" or "Next" only if there is a previous or
next item in the list. Otherwise, the words Previous and Next are not clickable, and are just
displayed for design reasons, so the eye does not need to jump back and forth.

Once you are using subtitles in an article with pagination, the content will no longer be
displayed in a single page format. In order to display the entire article in a single page (e.g. for
printing) you can use a link with options like this:

|View entire article

113

37 AUDIO PLAYER FOR ATTACHED MP3
FILES

Newscoop has an easy mechanism for attaching files to articles. In the Article Edit screen,
on the right, you can attach files either from the existing file archive or upload new files. In
this example we will embed an MP3 player in the page, playing audio files which have been
attached to the article.

We offer two different examples of using an embedded Flash player. The first example
embeds a player at the end of an article, like this:

Meskay Tem, 3Th AanbHOGOALWMKA — HE NEPBLIE, KTO NONNATHICA 33 HOYHOW OTALIX HA
TeppuTopui BapaHosr4cKoro paiiona. B HoaBpe 2010 roaa y BOAWTENA, YCHYBLUETO Ha CTORHKE
Henoganeky oT A. JyGpoBHO, 38 HOYb NOXMTUNK NONMYPLI HOBOrOAHUE NOAAPKOB, KOTOPbLIE, K
CNoBY, A0 CHX NOP HE HaLNN.

MpunoxeHua

Kak BOPbI OCTEBMNK IPY30BHEKN Ge3 OeHanHa W Koneca

B BapaHoBHYCKOM palioHe 00BopoBank (ypel.mp3, 1232Kb

Audio player on intex-press.by
The player we're using in this example needs to be placed in this folder:

/templates/_swf/player_mp3_maxi.swf

Any other player and any other folder location is possible. You only need to change the
path in the code accordingly.

This code snippet will:

e Check to see if the article has any attachments; if it does, it will list them

® Check to see if the attachment has an extension of "mp3"

e Ifitis mp3, it will:

Display the attachment's file description

Call the Flash player and set its values

Give the Flash player the URI for the article attachment

Create a download link for the article attachment with its URI, file name and
size

o

o o0 o

{{ if Sgimme->article->has_attachments }}
{{ list_article_attachments }}
{{ if Sgimme->attachment->extension == "mp3" }}

{{ $gimme->attachment->description }}

<object height="20" width="200" data="/templates/_swf/player_mp3_maxi
.swf" type="application/x-shockwave-flash" align="top">
6. <param value="/templates/_swf/player_mp3_maxi.swf" name="movie" /
>

g w N e

7. <param name="wmode" value="opaque" />

8. <param value="mp3={{ uri options="articleattachment" }}&shows
top=l& showvolume=1& buttonwidth=25& sliderwidth=15&bgcolorl
=5EA65E& bgcolor2=365E36" name="FlashVars" />

9. </object>

10. {{ Sgimme->attachme
nt->file_name }}, {{ $gimme->attachment->size_kb }}Kb

114

11. {{/if}}
12. {{/list_article_attachments}}
13. {{/if}}

USING MULTIPLE PLAYERS

The second example comes from Fluter.de, and involves keywords and multiple players.
Here is a screenshot of how the players appear on the page:

MAGAZIN DER BUNDESZENTRALE FUR POLITISCHE BILDUNG

C—
THEMA FOKUS FILM LESEN MUSIK ERFAHRUNGEN DOSSIERS MEDIATHEK MITMACHEN

MUSIK Bl®si0REW SONGTEXT

THE MUSTARD TUBES

Audio players on fluter.de
This example does the following:

e Uses an IF statement to see if the article has the keyword of 'mp3podcast|’
e If it does, Newscoop calls a Flash player
e Newscoop passes the Flash player the URL of the MP3 file

The audio files on Fluter.de are not article attachments. In the editorial workflow of that
publication, the audio files are created separately and uploaded to a special location on the
server. The code example below will point to the location:

htep://www fluter.de/medien/podcast_audio/

There, the audio files are sorted in subfolders by issue number, which we can retrieve using
{{ $gimme->issue->number }}. Each file name contains a combination of issue number and
article number, and finishes with the track number, so we can retrieve a specific file using:

podcast_mp3_{{ S$gimme->issue->number }}_{{ S$gimme->article->number }}_fl.mp3

The publication editor adds a keyword to the article containing the number of the audio
files; mp3podcast| means one file, mp3podcast?2 two files, and so on. Depending on this
keyword, the template will create one or more players. Here is the code for one player:

1. {{ if $gimme->article->has_keyword (mp3podcastl) }}

2. <object type="application/x-shockwave-flash" data="/medien/player/player.
swf" width="290" height="24" id="audioplayerl"><param name="movie" value=
"http://www.fluter.de/audio-player/player.swf" />

15

@ -1 o Ul

<param name="FlashVars" value="playerID=1l&bg=0x999999& leftbg=
0x74787A& lefticon=0xffffffe& rightbg=0x0090f0& rightbghover=0x74
787A& righticon=0x000000& righticonhover=0x0090f0& text=0xffffff
& slider=0x0090f0& track=0xFFFFFF& border=0xffffffeamp; loader=0x
ffffffsamp; soundFile=http%$3A%2F$2Fwww.fluter.de%2Fmedien%2Fpodcast_audio%
2F{{ $gimme->issue->number }}%2Fpodcast_mp3_{{ $gimme->issue->number }}_{
{ $gimme->article->number }}_f£fl.mp3" />

<param name="quality" value="high" />

<param name="menu" value="false" />

<param name="bgcolor" value="#ffffff" />
</object>
{{ /7if }}

This approach can be used for any file attachments; you can apply similar methods for PDF
attachments or movies, for example. See the section Article object and attachment, comment,
location in the Template Reference for more information on working with article
attachments.

Ié

38 RSS, SITEMAP, KML AND XML

The Newscoop template engine allows you deliver many kinds of structured content,
including HTML, XML, CSV, vCard and more. In this chapter we will explain a few of these
formats and how they are created. The process is always the same: develop your business
logic, and then wrap the presentation logic around it.

RSS FEED

We will start with producing an RSS feed for syndication of the latest 15 articles from the
current section in the publication. First, let's look at the basic structure of an RSS
document. The channel tag contains three elements; channel metadata, an image block and
an items list:

1. <?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xmlns:atom="http://www.w3.0rg/2005/Atom" xmlns:media="
http://search.yahoo.com/mrss/">
<channel>
[channel metadatal]
[image block]
[items list]
</channel>
</rss>

N

W 3 o U W

Channel metadata is a required element which can include the channel's name or title,
description, language, URL and copyright information.

<title>{{ $gimme->publication->name }}</title>

<link>http://{{ $gimme->publication->site }}</link>

<description>{{ $siteinfo.description }}</description>

<language>{{ $gimme->language->code }}</language>

<copyright>Copyright {{ $smarty.now|date_format:"$Y" }, {{ S$gimme->public

ation->name }}</copyright>

6. <lastBuildDate>{{ $smarty.now|date_format:"%a, %d %$b %Y $H:%$M:%S" }} +010
0</lastBuildDate>

7. <generator>Newscoop</generator>

U W N

The Newscoop snippet above grabs the name and site attributes of the publication, as well
as the language code. Also, we make use of Smarty with some special modifiers to display
the current date and time in two different formats (for more information on this, please
read the Smarty manual).

Image block - the image's URL, title, link, width, and height tags allow RSS viewers to
translate the file into HTML. This block is very straight forward, using the site and name
attributes of the Newscoop publication.

1. 

NS}

~ o U W

17

Items list - this is the most important piece of the RSS document, as the actual feeds are
generated here. For this purpose we will use the list_articles statement with $gimme to
request the latest |5 published articles. The list is built using the current language,
publication, issue and section from the context.

1. {{ list_articles length="15" order="bypublishdate desc" }}

2. [list of items]

3. {{ /list_articles }}

Now we need to define the list of items.

1. <item>

2. <title>{{ S$gimme->article->name }}</title>

3. <link>{{ url options="article" }}</link>

4, <description>

5. {{ $gimme—>article->intro|strip_tags:false|strip|escape:'html':'utf-8'
}}

6 </description>

7. <category domain="{{ url options="section" }}">

8 {{ Sgimme->section->name }}

9. </category>

10. {{ if $gimme->article->author->name }}

11. <atom:author>

12. <atom:name>{{ $gimme->article->author->name }}</atom:name>

13. </atom:author>

14. {{ /if }}

15. <pubDate>

16. {{ Sgimme->article->publish_date|date_format:"%a, %d %b %Y $H:3%M:%S" }}
+0100

17. </pubDate>

18. <guid isPermalLink="true">{{ url options="article" }}</guid>

19. </item>

Let's explain where we get the data from for each item tag:
title: The article name.
link: The article URL from Newscoop.

description: The text of the article introduction, which is a custom field for the particular
article type used here. In addition, we use some Smarty modifiers in order to clean up the
text, making sure it will be displayed properly.

category: We use the section name here.
atom author: If the article has an author defined, then we display their full name.

pubDate: The publication date of the article, with some special formatting. Please read up on
the Smarty date_format modifier if you aren't sure about this.

guid: The article URL as global unique identifier for the item.

Finally, this is how the whole template file should look:

1. <rss version="2.0" xmlns:atom="http://www.w3.0rg/2005/Atom" xmlns:media="
http://search.yahoo.com/mrss/">
<channel>
<title>{{ $gimme->publication->name }}</title>
<link>http://{{ Sgimme->publication->site }}</link>
<description>{{ $siteinfo.description }}</description>
<language>{{ $gimme->language->code }}</language>
<copyright>Copyright {{ $smarty.now|date_format:"$Y" }}, {{ $gimm
e—>publication->name }}</copyright>

oUW N

118

8. <lastBuildDate>{{ $smarty.now|date_format:"%a, %d %b %Y %H:%$M:%S"
}} +0100</lastBuildDate>

9. <generator>Newscoop</generator>

10. 

17. <atom:link href="http://{{ Sgimme->publication->site }}/templates
/feed/index-en.rss" rel="self" type="application/rss+xml" />

18. {{ list_articles length="20" order="bypublishdate desc" }}

19. <item>

20. <title>{{ $Sgimme->article->name|html_entity_decode|regex_repl
ace:'/&(.*?)quo;/':'" ' }}</title>

21. <link>http://{{ S$gimme->publication->site }}/ru/{{ Sgimme->is
sue->number }}/{{ $gimme->section->url_name }}/{{ $gimme->article->number

}}</link>

22. <description>

23. {{ $gimme->article->intro|strip_tags:false|strip|escape:"'
html':'utf-8' }}

24. </description>

25. <category domain="http://{{ S$Sgimme->publication->site }}/{{ $

gimme->language->code }}/{{ $gimme->issue->number }}/{{ $gimme->section->
url_name }}">{{ $gimme->section->name }}</category>

26. {{ if Sgimme->article->author->name }}

27. <atom:author><atom:name>{{ $gimme->article->author->name }}</
atom:name></atom:author>

28. {{/if}}

29. <pubDate>{{ S$gimme->article->publish_date|date_format:"%a, %d
$b %Y $H:%M:%S" }} +0100</pubDate>

30. <guid isPermalLink="true">http://{{ $gimme->publication->site

}}/{{ S$gimme->language—->code }}/{{ $gimme->issue->number }}/{{ Sgimme->se
ction->url_name }}/{{ $gimme->article->number }}</guid>

31. </item>
32. {{/list_articles}}
33. </channel>

34. </rss>

How to get it working

There are different ways to achieve this, however what we recommend is to use Google
FeedBurner as it provides significant benefits like statistics, social sharing, among others.
Read more about FeedBurner at http://feedburner.google.com/.

Now that you already have your RSS template file you need to configure it in FeedBurner.
You can do this easily by inputting the URL to the RSS in your site. Usually the URL looks
like this, as it is a direct reference to the RSS template file:

http://your.site.url/?tpl=123
FeedBurner will give you back a new "burned" URL that looks something like this:
http://feeds.feedburner.com/YourFeedName

Where YourFeedName is the name you input when burning your RSS feed in FeedBurner.
Now all what you need to do is to include the following line in the header template of your
site.

<link rel="alternate" type="application/rss+xml" title="Newscoop News" href="ht
tp://feeds.feedburner.com/YourFeedName" />

119

http://feedburner.google.com/

GOOGLE SITEMAPS

The Sitemaps protocol, introduced by Google, allows you to inform search engines about
links on your site that are available for crawling. A Sitemap is a file in a specific XML format
that lists the URLs of your site, including metadata about each URL carrying data like last
updated, the relevance of the resource compared to other URLs in the site, and so on. This
allows search engines to index the site in a more optimal way.

How to build a site map depends on the content structure you have designed for your
specific site, but whatever it is, $gimme will allow you to generate it.

Goal / Task

To display the Site Map for our particular use case, listing: All articles regardless of language,
issue and section, of type news, All articles regardless of language, issue and section, of type
show, All subtopics in English and French languages with parent topic equal to Countries,
All sections from the current issue in English and French languages.

Implementation

All articles regardless of language, issue and section, of type news.

1. {{ list_articles ignore_language="true" ignore_issue="true" ignore_sectio
n="true" order="bypublishdate desc" constraints="type is news" }}

2. <url>

3. <loc>http://wadr.org{{ uri options="article" }}</loc>

4., <lastmod>{{ S$gimme->article->publish_date|camp_date_format:"$Y-%m-%d"

}}</lastmod>

5. <changefreg>daily</changefreqg>

6. <priority>0.6</priority>

7. </url>

8. {{ /list_articles }}

Notice the use of ignore_language, ignore_issue and ignore_section. All these are set to true
so that those values from the context are ignored when building the list. We use the same
approach for the next list.

All articles regardless of language, issue and section, of type show.

1. {{ list_articles ignore_issue="true" ignore_section="true" ignore_languag
e="true" order="bypublishdate desc" constraints="type is show" }}

2. <url>

3. <loc>http://wadr.org{{ uri options="article" }}</loc>

4, <lastmod>{{ S$gimme->article->publish_date|camp_date_format:"%Y-%m-%d"

}}</lastmod>

5. <changefreg>daily</changefreqg>

6. <priority>0.8</priority>

7. </url>

8. {{ /list_articles }}

This list is similar to the first one. The only difference is we are requesting articles of a
different type: show this time.

All subtopics in the English language with parent topic equal to Countries.

1. {{ set_language name="English" }}
2. {{ set_topic name="Countries:en" }}
3. {{ list_subtopics }}

4. <url>

5.

<loc>http://wadr.org/{{ S$gimme->language->code }}/?tpid={{ S$gimme->to
pic—>identifier }}&tpl=1442/</loc>

120

6. <changefreg>daily</changefreqg>
7. <priority>0.4</priority>
8. </url>
9. {{ /list_subtopics }}
All subtopics in the French language with parent topic equal to Countries.
1. {{ set_language name="French" }}
2. {{ set_topic name="Countries:en" }}
3. {{ list_subtopics }}
4. <url>
5. <loc>http://wadr.org/{{ $gimme—>language—>code }}/?tpid={{ Sgimme—>to
pic->identifier }}&tpl=1442/</loc>
6. <changefreg>daily</changefreqgq>
7. <priority>0.4</priority>
8. </url>
9. {{ /list_subtopics }}
All sections from the current issue in the English language.
1. {{ set_current_issue }}
2. {{ set_language name="English" }}
3. {{ list_sections }}
4. <url>
5. <loc>http://wadr.org/{{ $gimme->language—>code }}/{{ $gimme->issue—>u
rl name }}/{{ $gimme->section->url_name }}/</loc>
6. <changefreg>weekly</changefreg>
7. <priority>0.3</priority>
8. </url>
9. {{ /list_sections }}
All sections from the current issue in the French language.
1. {{ set_language name="French" }}
2. {{ list_sections }}
3. <url>
4. <loc>http://wadr.org/{{ $gimme—>language—>code }}/{{ S$gimme—>issue—>u
rl_name }}/{{ $gimme->section->url_name }}/</loc>
5. <changefreg>weekly</changefreg>
6. <priority>0.3</priority>
7. </url>
8. {{ /list_sections }}
This is how the full Sitemap file should look:
1. <?xml version="1.0" encoding="UTF-8"?>
2. <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
3. {{ list_articles ignore_language="true" ignore_issue="true" ignore_sectio
n="true" order="bypublishdate desc" constraints="type is news" }}
4. <url>
5. <loc>http://wadr.org{{ uri options="article" }}</loc>
6. <lastmod>{{ $gimme->article->publish_date|camp_date_format:"%$Y-%m
-%d" }}</lastmod>
7. <changefreg>daily</changefreqg>
8. <priority>0.6</priority>
9. </url>
10. {{ /list_articles }}
11. {{ list_articles ignore_issue="true" ignore_section="true" ignore_languag
e="true" order="bypublishdate desc" constraints="type is show" }}
12. <url>
13. <loc>http://wadr.org{{ uri options="article" }}</loc>
14. <lastmod>{{ $gimme->article->publish_date|camp_date_format:"%$Y-%m
-%d" }}</lastmod>
15. <changefreg>daily</changefreqg>
16. <priority>0.8</priority>
17. </url>
18. {{ /list_articles }}

121

19. {{ set_language name="English" }}
20. {{ set_topic name="Countries:en" }}
21. {{ list_subtopics }}

22. <url>

23. <loc>http://wadr.org/{{ $gimme->language—>code }}/?tpid={{ $gimme
—>topic—>identifier }}&tpl=1442/</loc>

24. <changefreg>daily</changefreg>

25. <priority>0.4</priority>

26. </url>

27. {{ /list_subtopics }}

28. {{ set_language name="French" }}
29. {{ set_topic name="Countries:en" }}
30. {{ list_subtopics }}

31. <url>

32. <loc>http://wadr.org/{{ $gimme->language->code }}/?tpid={{ $gimme
->topic->identifier }}&tpl=1442/</loc>

33. <changefreg>daily</changefreqgq>

34. <priority>0.4</priority>

35. </url>

36. {{ /list_subtopics }}

37. {{ set_current_issue }}

38. {{ set_language name="English" }}
39. {{ list_sections }}

40. <url>

41. <loc>http://wadr.org/{{ $gimme->language->code }}/{{ $gimme->issu
e->url_name }}/{{ $gimme->section->url_name }}/</loc>

42. <changefreg>weekly</changefreqg>

43. <priority>0.3</priority>

44. </url>

45. {{ /list_sections }}
46. {{ set_language name="French" }}

47 . {{ list_sections }}

48. <url>

49, <loc>http://wadr.org/{{ S$gimme->language->code }}/{{ Sgimme->issu
e—>url_name }}/{{ $gimme->section->url_name }}/</loc>

50. <changefreg>weekly</changefreg>

51. <priority>0.3</priority>

52. </url>

53. {{ /list_sections }}
54. </urlset>

How to get it working

There are different ways to inform the search engines to crawl your site using the XML
Sitemap we just created. However, this is out of the scope of this guide as it has nothing to
do with Newscoop templating.

You can find detailed information on how to do it in these following links:
http://www.sitemaps.org/

https://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=78808&ctx=cb

KML DOCUMENTS FOR EXPORTING MAP LOCATIONS

KML is like an RSS feed for geo-location data. It is a XML specific notation for expressing
geographic annotation and visualization within maps, Earth browsers and other applications.

One of the sample Template Packages on the Sourcefabric website is the "Ushahidi Cooker"
which is dedicated to mapping content and generating KML feeds. You will come across
KML feeds when you export from mapping services or - in the case of Ushahidi - when you
want to import additional information into a map. Newscoop handles maps, and using the
following code it can deliver valid KML feeds.

122

http://www.sitemaps.org/
https://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=78808&ctx=cb

Goal / Task

To generate a simple KML file containing the list of locations for the current article.

Implementation
The structure of a basic KML file breaks down as follows:

o An XML header and a KML namespace declaration. You will see these two lines in the
full version of the KML file at the end of this section.

e A Placemark object that contains the following elements: A name used as the label for
the Placemark, a description that appears in the "balloon" attached to the Placemark,
and a Point that specifies the position of the Placemark on the Earth's surface.

KML is much more complex than this, and allows you to provide more information about
the locations in your map and style those as much as you want, but that is KML-specific and
out of the scope of this document. What we want to show you here is how you can use
$gimme to pull the data and display the locations, which ultimately is what matters the most.

First you need to provide basic info about the article. In this case we use the article name
and section name as the name for our KML document, and the custom field intro as the
description.

1 <kml xmlns="http://www.opengis.net/kml/2.2">

2. <Document>

3 <name>{{ S$gimme->article->name }} in {{ $gimme->section->name }}</name>
4. <description><! [CDATA[{{ S$gimme->article->intro }}]]></description>

Next, we provide some custom styling for the marker icons. For this we need to generate a
unique id per location, so we use the article number plus the incremental index in the list.
We also validate inside the list if the location is enabled or not.

1. {{ list_article_locations }}

2. {{ 1f $gimme->location->enabled }}

3. <Style id="style{{ S$gimme->article->number }}-{{ S$gimme->current_list
—>index }}">

4. <IconStyle>

5. <Icon>

6. <href>http://www.sourcefabric.org/geolocation/markers/mar
ker—-gold.png</href>

7. </Icon>

8. </IconStyle>

9. </Style>

10. {{ /if }}

11. {{ /list_article_locations }}

Now the most important section, the list of locations to be displayed on the map. We use
list_article_locations, and after making sure the location is enabled we build the Placemark
block. For the Placemark name we are using the location name together with the article
name. Then we use styleUrl to reference the custom style defined in the block above.

The last sub-block is Point, which is where we actually specify the location positioning on
the map. Notice the use of $gimme->location->longitude and $gimme->location->latitude, it
could not be more intuitive :-) The value 0.000000 after latitude corresponds to altitude,
which is not relevant for this example but must be there as per KML specifications.

1. {{ list_article_locations }}

2. {{ if $gimme->location->enabled }}

3. <Placemark>

4. <name>{{ S$gimme->location->name }} @ {{ Sgimme->article->name }}<
/name>

5. <description></description>

123

6. <styleUrl>#style{{ Sgimme->article—>number }}-{{ S$Sgimme->current_
list—>index }}</styleUrl>

7. <Point>

8. <coordinates>{{ $gimme->location->longitude }}, {{ $gimme->loc
ation->latitude }},0.000000</coordinates>

9. </Point>

10. </Placemark>

11. {{ /if }}

12. {{ /list_article_locations }}

This is how the full KML file should look:

1. <?xml version="1.0" encoding="UTF-8"?>

2. <kml xmlns="http://www.opengis.net/kml/2.2">

3. <Document>

4, <name>{{ S$gimme->section->name }} in {{ $Sgimme->article->name }}</nam
e>

5. <description><! [CDATA[{{ $gimme->article->description }}]]></descript
ion>

6. {{ list_article_locations }}

7. {{ 1f $gimme->location->enabled }}

8. <Style id="style{{ S$Sgimme->article->number }}-{{ S$gimme->current_
list->index }}">

9. <IconStyle>

10. <Icon>

11. <href>http://www.sourcefabric.org/geolocation/markers
/marker-gold.png</href>

12. </Icon>

13. </IconStyle>

14. </Style>

15. {{ /7if }}

16. {{ /list_article_locations }}

17.

18. {{ list_article_locations }}

19. {{ 1f $gimme->location->enabled }}

20. <Placemark>

21. <name>{{ $gimme->location->name }} @ {{ S$gimme->article->name

} }</name>

22. <description></description>

23. <styleUrl>#style{{ $gimme->article->number }}-{{ $gimme->curr
ent_list->index }}</styleUrl>

24. <Point>

25. <coordinates>{{ $gimme->location->longitude }}, {{ $gimme-
>location->latitude }},0.000000</coordinates>

26. </Point>

27. </Placemark>

28. {{ /if }}

29. {{ /list_article_locations }}

30. </Document>

31. </kml>

Put KML feeds into action

KML files are meant to be used in browsers and any other kind of application supporting
this format, like for example Google Earth, Google Maps, or Ushahidi Layers. So, once
Newscoop generates this file for you, you just need to use it in any of these tools,
depending on your needs.

You can try this with the Template Package "Ushahidi Cooker". You will also find a video
tutorial about the "Ushahidi Cooker" here:

http://www.sourcefabric.org/en/products/newscoop_templates/

124

http://www.sourcefabric.org/en/products/newscoop_templates/

39 SEARCH ENGINE OPTIMISATION (SEO)

Search Engine Optimisation is about improving the way your content is visible on the
Internet. This is often understood as making your publication show up as highly as possible
in search results. But limiting SEO to tricking search engines would be missing the point.
Think about SEO as part of the service that you provide to your readers, not just a
mechanism to jump the queue in search algorithms.

Imagine you have published an article about the impact the fall of the Berlin Wall has had on
urban planning in that city today. It is named "Right in the middle" and because your web
design uses big, trendy letters this short title just looks really good. Your Newscoop
template is using the article name in the title tag in the header of the HTML document.

Imagine a potential reader who is typing "Berlin Wall" into their favourite search engine.
Amongst the results, somewhere, your article shows up. The search engine will display the
content of the title tag in the long list of results. What are the chances that the reader
would click "Right in the middle" when looking for specific information about the Berlin
Wall? The reader would probably be more likely to click "Fall of Berlin Wall heats up
property speculation 20 years later".

This descriptive content increases the chances that readers will click on your article. At the
same time, search engines value the content of the title tag highly. This little bit of extra
work is likely to catapult your page upwards in the ranks of search results. Where the old
title tag did not even mention the Berlin Wall, your new title tag does, and provides
additional key words that will have an impact on your article's ranking and your publication's
visibility.

This chapter will help you to make most of your publication's most valuable asset: your
content. The following examples will cover a number of small modifications to your
templates and other parts of your website which can deliver improved page rank and
visibility. The examples will focus on SEO practices involving your publication or template
structure, with a few journalistic guidelines.

CREATING DESCRIPTIVE PAGE TITLES

Add the field "seo_title" to your article type. This field can be displayed with $gimme-
>article->seo _title in the header region of your document.

1. <head>
2. <title>{{ S$gimme->article->seo_title }}</title>
3. </head>

However, if the journalist forgot to fill in this field, the title tag of the page would be empty.
So you should present a fallback option. A simple way of doing this, providing a reasonable
solution for section pages and the home page at the same time, would be:

1 <head>

2 <title>{{ strip }}

3 {{ 1f $gimme->article->seo_title|trim !== "" }}

4. {{ $Sgimme—>article->seo_titlel|escape:'html'|trim }} |

5. {{ else }}

6 {{ $gimme->article->name|escape: 'html'|trim }} |

7 {{ /if }}

8 {{ $gimme->section->name }} in {{ $gimme->publication->name
}}

125

9. {{ /strip }}
10. </title>
11. </head>

The functions trim and escape'html' are used to make sure the content is clean and HTML.
If the seo _title field is not filled in, the article name is displayed instead. If you are on a
section page, the article values are not displayed if you link to the section using
option=section.

USE THE "DESCRIPTION" META TAG

The description is a summary of what your article is about. The description meta tag goes
into the header of your document. Many times, the text in this description will be given as
an introduction to the page in a search result. The meta tag looks like this:

<meta name="description=" content="...">

Ideally, you should add a field to the Article Type that holds the description content. If this
field is empty, you should use text from the main text of the article. A custom description
will often be more inviting to a reader, in a list of search results, than the first lines of the
main text.

Because the description will most probably come from a WYSIWYG textarea field, it is
important to strip_tags. Opinions on the ideal length for meta descriptions vary. In the
following example, we set the length to the first 150 characters of the article's main text, if
no custom description has been provided.

1. <meta name="description=" content="{{ strip }}

2. {{ if $gimme->article->description_tag|strip_tags|trim !== "" }}

3. {{ $gimme->article->description_tag|strip_tags|escape:'html'|trim }}

4., {{ else }}

5. {{ $gimme—>article->full_text|strip_tags|escape:'html'|trim|truncate:
150 }}

6. {{ /if }}

7. {{ /strip }i" />

HUMAN READABLE URLS REFLECTING THE CONTENT

Information in the URL describing the content of the page is valued highly by search
engines. You can control the URL for each issue and section, setting short names. So instead
of the section number "/12/", this part of the URL might read "/culture/". You can find these
options in the Newscoop administration interface. Select "Settings" in the list of issues and
sections.

The article content can be reflected in three different human readable ways in the URL. You
can select the option to use the article title, article keywords, or topics linked with the
article. If your publication requires it, you can also create a combination of these options.
The configuration for the URL display is done in the administration interface under
"Configure Publication".

Here some examples of what these URLs could look like:

e by article title - http://yoursite.com/en/mar20 | | /posts/4/Healthy-options-for-your-
sweet-tooth.htm (the article title is "Healthy options for your sweet tooth")

e by article keywords - http://yoursite.com/en/mar201 | /posts/4/healthy-options.htm
(the article has keywords "healthy" and "options")

126

® by article topics - http://yoursite.com/en/mar20| | /posts/4/health-dine-wine-tomato-
garlic-bread.htm (the article has topics "health", "dine", "wine", "tomato", "garlic" and
"bread")

e by combining some - or all - of these options

STRUCTURE HEADING TAGS PROPERLY

Heading tags (h1, h2, h3, ..) reflect the hierarchy of the content on a page. This is how
search engines read them, so you should design your page in the same way for humans. For
example, when designing a page, don't use heading tags to control the layout.

HTML 5 is not very different from HTML 4 when it comes to SEO, so the rules are almost
the same:

e Use only one HI element on any page

® You can use any number of H2, H3, H4, H5, H6 elements on any page, as long they
follow this hierarchy

e Use or tags for lists

e For menus, use the tag in HTML 4 and the <nav> tagin HTML 5

e Use <div> tags for styling blocks inside a template

e Use inline tags like <p> or only for content

The logic for using only one HI element is derived from the fact that search engines identify

<h|> tags as page titles. Sometimes, search engines ignore <title> tags because they have

been abused by webmasters.

HTML 5 also introduces new tags like <header>, <footer>, <nav>, <article>, <aside> and
<section>. Search engines disqualify the use of multiple <header> tags if they are positioned
one after another, but not if they are used as headers for each <article> tag. The same thing
happens for <nav> and <footer> tags. A page can have multiple <article>, <aside> and
<section> tags, each of these containing just one <header>, <footer> and <nav> tag.

XML SITEMAP FOR YOUR PUBLICATION

Providing a sitemap in a specific XML format will make it easy for search engines to gain
access to your content. The XML sitemap delivers all content that you wish to be indexed
in a machine readable file.

Providing a sitemap also makes sure that search engines will find all of your content. A
simple example: if you are using Flash to link from one page to another, that link is not being
followed, because it is invisible to spiders (search engine robots). Such "invisible" pages will
be listed in the sitemap, and help search engines to understand where these pages are.

In order to create a sitemap for your publication, see the chapter about XML, RSS, KML and
sitemaps.

UNIQUE URLS: THE CANONICAL TAG

Canonical tags have one important purpose: tell search engines what the "clean" URL of the
page is. The canonical tag sits in the header of your page. It was introduced in February
2009 by Google, Yahoo and Microsoft and it looks like this:

<link rel="canonical" href="http://www.example.com/" />

127

This is meant to put an end to the issues related to duplicate content. In short: duplicate
content was used by some sites to increase their page rank. To prevent this kind of
spamming, search engines rated domains with duplicate content lower. But any CMS will
need different URLs for the same page, for example when passing on a parameter in the
URL for browsing history, login, related items and others. The canonical tag now allows sites
to make sure they are not ranked lower because they produce some duplicate content.
Using the canonical tag will result in higher page ranks.

You need to adjust the following example to the template and folder names you are using
for your publication.

1. {{ if S$gimme->template->name == "package_name/article.tpl" }}

2. <link rel="canonical" href="{{ url options="article" }}" />

3. {{ /if }}

4. {{ if $gimme->template->name == "package_name/section.tpl" }}

5. <link rel="canonical" href="{{ url options="section" }}" />

6. {{ /if }}

7. {{ if Sgimme->template->name == "package_name/index.tpl" }}

8. <link rel="canonical" href="http://{{ $gimme->publication->site }}" /
>

9. {{ /if }}

ADDITIONAL CHECKLIST FOR YOUR JOURNALISTS AND
EDITORS

The following list is not relevant for making templates. But while you are working on SEO,
you might as well pass on some tips to your colleagues who are contributing content. At the
end of the day, their input will guide the audience to your site.

Explain to the journalists and editors that their input into SEO could dramatically increase
the readership of their articles on your publication's site. A little extra effort increases
advertiser value, extends the shelf life of the article, and makes the journalist who wrote it
much more famous.

When writing descriptions (for both articles and images)...

e Summarize the content accurately. Below are a few pointers that might help
journalists and editors create a good description.

o Write unique descriptions. While this might appear impossible in large publications
with thousands of articles and a large contributing staff, keeping this idea in your head
will help avoid being boring and generic.

e Write for your audience, not for a search engine. Avoid writing a description tag that
bears no resemblance to the content of the article. Don't write up a list of keywords,
but form a sentence or two.

® Do not use the same description across your site. This could actually be worse than
using no description tag at all. Imagine all search results in a list saying: "Simply the
best magazine in the world".

When writing an article or image description, or providing a custom SEO title, include the
following elements:

e Who or what is being shown? What is the name of the person, the animal, the
building, the event? "Bird" is better than nothing, but "Eagle" would be better

e Where is it happening? "Eagle in the sky" is good, "Eagle in the sky above the Alps" is
better

e Why is it happening? Why are you writing about it? Are you writing about an
"Endangered Eagle in the sky above the Alps"

128

® When is this happening? Are we looking at an "Endangered Eagle in the sky above the
Alps in Spring"?

You don't need to go overboard with building endless descriptions. Prioritize according to
your story. The above questions are a good way to get to the essence quickly. In the end,

you might settle for "Endangered Eagle flys in the Alps" - this captures the story better and
would attract far more readers than "Bird" would ever do.

Make use of the image alt description
When adding an image, do not leave the alt tag empty. Firstly, screen reader programs for
people with visual impairments rely on this information. Secondly, image searches on the

Internet will categorise and rank images based on information in the alt tag. Readers finding
your publication through image searches may be more common than you might think.

Link text should relate to the page it links to

When linking to a page, make sure the link text is related to the content of the page you link
to. "You can download Newscoop here" is bad. "Download Newscoop for free" is better.

129

40 NEWSCOOP AND HTML5

The big challenge for web publishing today is the migration of sites to the HTMLS5 and CSS3
standards. Fortunately, Newscoop is HTMLS5 ready.

Other content management systems rely on HTML code provided by third-party widgets,
modules or plugins. Changing the HTML output of these external modules often requires
digging into their code. In Newscoop, because of the strict separation of business logic and
presentation logic in the template engine, you have total control over HTML5 and CSS3
template output.

Below, we introduce a few examples of HTML5 / CSS3 in Newscoop templates to illustrate
the ease of implementation of HTMLS5 features.

HTML metatags and header information

A typical HTML5 header in Newscoop would start like this:

1 <!DOCTYPE html>

2 <html lang="{{ $gimme->language->code }}">

3 <head>

4. <meta charset="utf-8" />

5 <meta name="description" content="{{ $siteinfo.description }}" />
6 <meta name="keywords" content="{{ if $gimme->article->keywords }}
7 {{ $gimme->article->keywords }},
8. {{ /if }}

9. {{ $siteinfo.keywords }}" />
10. <title>{{ S$gimme->publication->name }}</title>
11. <link rel="stylesheet" href="screen.css" media="all" />
12. </head>

{{ $siteinfo.description }} is the global variable which holds the site description specified in
the Newscoop administration interface.

{{ $gimme->article->keywords }} and {{ $siteinfo.keywords }} are two ways to include meta
tag keywords. In Newscoop, an individual article can have its own keywords specified. If
that's the case, the meta tag for keywords will be filled with these article specific keywords.
Otherwise, only global site keywords will be used.

Finally, the site title is defined showing the name of the publication using {{$gimme-
>publication->name}}.

Multiple columns in HTML5

Multi-Column Layout defines new CSS properties for columns of text. Content can flow
into multiple columns, with a gap between them. You can put the content in the
appropriate places inside the HTML layout.

1. <header>

2. <hgroup>

3. <hl>{{ $gimme—>article->name }}</hl>

4. </hgroup>

5. <p>By: {{ $gimme->article->author->name }}</p>
6. </header>

7. <div class="textl">

8. <p>{{ $gimme->article->lead }}</p>

9. </div>

130

10. <div class="text2" id="customCols">
11. <p>{{ $gimme—>article->body }}</p>
12. </div>

Accompanied by some CSS3 styling, this piece of code is enough to divide text into
columns, gaps, and even rules between columns.

1 .text2 {

2 -webkit-column-count: 2;

3. —-moz-column-count: 2;

4. column-count: 2;

5 —-webkit-column-gap: 20px;

6 -moz-column-gap: 20px;

7 column-gap: 20px;

8 -webkit-column-rule: lpx solid #999;

9. -moz-column-rule: lpx solid #999;
10. column-rule: 1lpx solid #999;

11. -webkit-border-radius: 10px;

12. -moz-border-radius: 10px;

13. border-radius: 10px;

14. '}

Video and audio handling

Not only text content is HTML5 ready - Newscoop can handle media attachments in a
HTMLS5 way. The following code shows how an audio file which has been attached to an

article in the Newscoop administration interface can be handled in HTML5:

1 <audio controls>

2 <source src="{{ uri options="articleattachment" }}"
3. type="{{ $gimme->attachment->mime_type }}">
4 </audio>

The code above displays a player for the specified audio attachment. To help the browser to
determine the MIME type of the audio file, the 'type' attribute is specified, although it can be

omitted. The same technique is possible for video content:

1. <video controls width="520" height="330">

2. <source src="{{ uri options="articleattachment" }}"
3. type="{{ $gimme->attachment->mime_type }}">
4. </video>

In both cases, {{ uri options="articleattachment" }} is replaced with the audio or video file
URL. With HTMLS5, you don't need to specify Flash players, because modern browsers have
a built-in player for embedded multimedia content.

131

4 I . TROUBLESHOOTING TEMPLATES

Newscoop's administration interface has a built-in preview option on the article edit page
which also shows template parsing errors, if there are any. When you browse your
publication in the preview window, you can see error messages for all parts of your
publication.

Recent Entries
[] the LUXURY E ADVERTISERS
Ourn HEALTH ECURITY TARGET
BREAKSON RISKS ONLINE
————— Comibedrdivs | OFFER EXPOSED DEMOGRAPHIC

tsesmore entries

B oures susmess somon s emmamen seoars e

European Wisty conditions
- sweep across China
candidates set
| i T | i

to be named
BRI '..E'Sf.‘{_s' - J‘lu.fl‘mz and Greek

ted for President
of the European Couneil in secret
ballat.

Tax ard trade bureau
considers aleohal
labeling

Parse errors

1n sec_theda

ed £ag (flocali. exp

eye

At the bottom of the preview window you can see error messages from the template parser.

The second frame on this page displays any parsing errors, which can be very useful for
debugging templates. It immediately narrows down possible errors to the specific main or
included template. It also displays the line and type of error.

The error messages are not always precise. The point where the parser encounters an
error may only be a reflection of a problem coming from further up in the template. If the
message shown by the parse error frame is not useful to find the problem, you'll have to
find an alternate way to locate it.

For example, in some situations, checking the source of the generated HTML page helps. It
may be that the content you expect to be shown somewhere doesn't appear on the page,
but it's in the HTML source. This obviously shows that the problem is not in Newscoop
but somewhere in HTML or CSS. The opposite is also true; if the source contains all the
<div> and <I[i> tags that it should but their content is empty, you can be sure that
Newscoop isn't working like it should.

There are lots of very handy tools out there in browsers nowadays. You can use them to
easily parse your HTML code and find an error. The one used in Firefox is Firebug. It is an
extension to Firefox, all you need to do is to find it in the repository and install to the
browser:

132

http://getfirebug.com/

* Wintry conditions
sweep across China

Tax and trade bureau

BRUSSELS - Italian and Greek 3 eonsidass aloohol
candidates nominated for President i g
of the European Council in secret

ballot.
, v
5% & U = |- console [HIMLY | cs5 oM (» [=]5]c}
< Edt a - h2 - dva#featured_post - div.threscol two - divitcontent.wrap < div#twrap < body.home < html Stylev | Computed Llayout DOM
text/ess> A|| steaturea post nz a (style.css (line 439)
colax: 111111
ant? class=urap®s fone-size: aepxs
uzed_photo” class="threacol_one"> '
chreecol_tws et resetess (ine 12)

festured posti>
cext-decoration: none;

)
Inherited from hz

BL, B2, b3, he, BS { reset.css (line #)
fome- family: Seorgia;

<mz>

<p>BRUSSELS - Tealian and Grask candidaves nominaced for Prasident S
it WE vl s oherited from oty hone

v
<sie eal, bow reset.css fline
. a v o tess (ine §)

ENTE

Aboutus | Ar|

5 £ 0 = ¢ console HIMLv | €SS DOM

<» Edit 1 img.woo-image - 3

</dive
<div id="sidebar® class="col-right*> |:mmlfbodw’dw,idiv[2]fdivrdw et
</dive

<
x

But what is really good, is that you can debug your jQuery templates with it. Just adding a

few lines of code to your JavaScript will provide Console feedback:

1. console.log ("Here are the date links:\r\n");
2. ...
3. console.log (link + "\r\n");

8§ » | Console > | HTML €55 DOM
@ Clear Persist Profile |.0.II| Errors Warnings Info Debug Info

Here are the date links:

Jrufpagefarchive /7Tdate=2011-03-28

Frufpagefarchive /Tdate=2011-03-£2
frufpageSarchive/Tdate=Z011-02-20
frufpagesarchive/Tdate=2011-03-31

Arufpage farchive /?date=2011-04-01

Jrufpagefarchive /7Tdate=2011-04-0Z2

FrufpageSarchive /Tdate=2011-04-03
frufpageSarchive/Tdate=2011-04-04
frufpagesarchivesTdate=2011-04-08

133

There's almost the same tool in Chrome, which can be found in the menu under Tools ->
Developer tools:

P

« € O ourralnewscocp-deHgn.sowrcarabriz.ory snjani ey o A
S 5= f
* Online securily risks exposed e =

Fem gt e —hin

o o Oopy Pacte

e s+ @
in bk LR h:

Farl 1
B Fric.

Wt Ay shem Eachnaths bar CalsTD

rnaze speberon shats bz, Eoshrztcmarager
sy 1

sk

otz (F Tocke (T4 ron

Bz

AREHISThel 345 TNagET A" 012 <1
Dy
£z Gk e

¥ .zenrch, ftop-asta 1oz, Fhop-
Nk, #reader, 31

#4150-nender,
Fhattos nidpet

"eol T dght e

s
Lram #2301 g 15 ¥

h <z,
O 5T | @ [rin | e cergede | diéarn | decooimey | dezodn | dwndn | decsierdnedod | @ a1

Another debugging strategy may be inserting temporary tags for printing the values of
Newscoop variables.

The following code checks the values of variables in the registration process. It doesn't make
any sense to use on a live site, but it may be useful for debugging purposes:

1 <h2>Add new subscription</h2>

2 {{* debug user add/edit/subscribe *}}

3. <h5>Edit_user_action:</h5>

4 <p>Edit user action defined: {{ if $gimme->edit_user_action->defined }
}defined{{ else }}not defined{{/if}}</p>

5. <p>Edit user action error: {{ if $gimme->edit_user_action->is_error }}
is_error, code: {{ S$gimme->edit_user_action->error_code }}, message: {{ $
gimme->edit_user_action->error_message }}{{ else }}not error{{/if}}</p>

6. <p>Edit user action ok: {{ if $gimme->edit_user_action->ok }}ok{{ else

}Inot ok{{/if}}</p>

7 <p>edit user action type: {{ $gimme->edit_user_action->type }}</p>
8.
9. <h5>Edit_subscription_action:</h5>
10 <p>Subs action defined: {{ if $gimme->edit_subscription_action->define
d }}defined{{ else }}not defined{{/if}}</p>
11. <p>Subs action error: {{ if $gimme->edit_subscription_action->is_error
}}is_error, code: {{ $gimme->edit_subscription_action->error_code }}, me
ssage: {{ $gimme->edit_subscription_action->error_message }}{{ else }}not
error{{/if}}</p>
12. <p>Subs action ok: {{ if S$gimme->edit_subscription_action->ok }}ok{{ e
lse }}not ok{{/if}}</p>
13. <p>Subs action {{ if S$gimme->edit_subscription_action->is_trial }}is_t
rial{{ else }}not trial{{/if}}</p>
14. <p>subs action {{ if S$gimme->edit_subscription_action->is_paid }}is_pa

id{{ else }}not paid{{/if}}</p>
15. {{* end debugging *}}

This would be the output:

134

Add new subscription

Edit_user_action:

Edit user action defined: defined
Edit user action error: not error
Edit user action ok: ok

edit user action type: edit

Edit_subscription_action:

Subs action defined: not defined
Subs action error: not error
Subs action ok: not ok

Subs action not trial

subs action not paid

Similarly to this, you can use this temporary outputs wherever you feel you need to check
what's really happening. For example, inside a list to check how values of list index and list
count change with every new cycle -

1.
2.
3.

{{ list_articles }}
<div class="post wrap">
<p>Current list index: {{ $gimme->current_list->index }}, list co
unt: {{ S$gimme->current_list->count }}</p>
<h2 class="post-title"><a href="{{ uri options="article" }}" rel=
"bookmark" title="{{ S$gimme->article->name }}">{{ if ! $gimme->article->c
ontent_accessible }}* {{ /if }}{{ S$gimme->article->name }}</h2>
</div>
{{ /list_articles }}

Here we put a temporary <p> tag with values of index and count above every title, and the
result would be like this screenshot:

SECTION: POLITICS (JANUARY 2011)

Current list index: 1, list count: 3

* European Council candidates set to
be named

Current list index: 2, list count: 3

* Wintry conditions sweep across
China

Current list index: 3, list count: 3

Food export duties set to rise

135

Or, you may want to check the values of parameters forwarded to a page. You can do this
at the template's very beginning:

1
2
3
4
5.
6
7
8

<p>Language: {{ $gimme->language->name }}

Issue: {{ Sgimme->issue->name }}

Section: {{ $gimme->section->name }}

Article no: {{ $gimme->article->number }}

Topic active? {{ if $gimme->topic->defined }}yes{{ else }}no{{ /if }}
</p>

{{ include file="set_thejournal/_tpl/top.tpl" }}

The output displays the values of the parameters, so you can check if everything is OK:

Language: English
Issue: January 2011
Section: Sci/Tech
Article no: 71

Topic active? no

April 21, 2011

10 amazing
zeolocation apps

MORE +

MOST COMMON ERRORS / PROBLEMS

Missing a closing element for {{ if }} statements - this especially happens when several
'if' clauses are nested. You can simplify your expression by using {{ elseif }}; that will
reduce the need for closing 'if's

Missing list closing element - this also happens more often when using lists inside lists
Wrong syntax inside an 'article list' constraints option. Because there are a lot of
possible options, always consult the template reference at the end of this book for
options and their correct formatting

Syntax errors in general - again, the safest way to avoid errors is to always consult the
template reference

Context problems - these are harder to discover because they don't produce parse
errors in the preview window. To discover context-related values problems, try
inserting temporary tags to output the values of variables. Do it at the beginning of
the template, then do it again after an action was performed. This way, you can see
what really happens with those variables.

WHERE TO GO FOR MORE HELP

There are a few places you can turn for troubleshooting assistance on your templates. The
first place to look is the Newscoop support forum, which you can find at
http://forum.sourcefabric.org

136

http://forum.sourcefabric.org/index.php/f/10/

Sourcefabric also offers paid support. As the maintainer of Newscoop (and its largest code
contributor), Sourcefabric can provide a broad and deep body of knowledge to our
customers. For example, we can help troubleshoot your templates or installation, or we can
create custom templates for you. You can find more details about Sourcefabric's services
on the website: http://services.sourcefabric.org

137

http://www.sourcefabric.org/en/services/about/346/Overview.htm

TEMPLATES USING JQUERY,
PHP AND THIRD PARTY
SERVICES

42. USING JQUERY AND PHP IN TEMPLATES

43. PULLDOWN MENU WITH SUPERFISH USING JQUERY
44. TABS WITH JQUERY

45. TICKER WITH JQUERY

46. IMAGE GALLERIES WITH JQUERY

47. CALENDARS WITH JQUERY

48. USING POLLS WITH AJAX

49. WIDGETS: YOUTUBE, VIMEO, TWITTER, FLICKR & CO.
50. PROFILE PICTURES: GRAVATAR, FACEBOOK, TWITTER
51. COMBINING NEWSCOOP AND SOUNDCLOUD

52. WORKING WITH FACEBOOK

53. WORKING WITH ADVERTISING

54. WAYS TO CREATE ARCHIVES

138

42 USING JQUERY AND PHP IN TEMPLATES

The Newscoop template engine comes with a set of custom functions which are used in
examples in this Cookbook. A full template reference can be found at the end of the book.
Everything involving the $gimme object is Newscoop related.

You can also find a number of examples in the advanced section, which use jQuery and
PHP. This chapter explains some of the background information you need to know to make
your work with advanced functions easier to understand. It will also allow you to venture
into making your own. If you do, by all means, tell us about it! You can mail us at
contact@sourcefabric.org and share your ideas with the community in our forums at
http://forums.sourcefabric.org

USING JQUERY IN YOUR TEMPLATES

jQuery is a fast and concise JavaScript Library that simplifies HTML document traversing,
event handling, animating, and Ajax interactions for rapid web development. If you haven't
used jQuery yet, you could start getting familiar with it by reading the tutorial on the jQuery
site: http://docs.jquery.com/Tutorials:How_jQuery Works

To use jQuery with Newscoop, you just need to add libraries in your _html-header.tpl file,
and that's it! It will be much easier if you follow our recommendations and put all your own
jQuery code in a separate file (/templates/set_name/_js/functions.js).

So the first thing to do will be to include all required jQuery libraries in the html header:

1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://ww
w.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

2. <html xmlns="http://www.w3.0rg/1999/xhtml">

3. <head>

4. <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

5. <meta http-equiv="Content-Language" content="en" />

6. -

7. <script type="text/javascript" src="http://ajax.googleapis.com/ajax/lib
s/jquery/1.5.2/jquery.min. js"></script>

8. <script type="text/javascript" src="http://ajax.googleapis.com/ajax/1lib
s/Jjqueryui/1.8.11/jquery-ui.min. js"></script>

9. <link type="text/css" href="http://ajax.googleapis.com/ajax/libs/jquery
ui/l.8.11/themes/base/jquery-ui.css" rel="stylesheet" />

10. <script src="http://{{ $gimme—>publication->site }}/templates/set_name/
_Jjs/functions.js"></script>

11. 000

12. </head>

The first <script> line is the jQuery library itself. It is required for all functions to work.

The next two lines are for jQuery Ul, which provides abstractions for low-level interaction
and animation, advanced effects and high-level, themeable widgets, built on top of the
jQuery JavaScript Library.

As you can see in the above example, we included all libraries from Google's CDN (see
http://code.google.com/apis/libraries/devguide.html#jqueryUl). You also can download
jQuery (see http://docs.jquery.com/Downloading jQuery) and copy it to the right place on
your server:

[1. <!-- Grab Google CDNs jQuery. fall back to local if necessary —--—> |

139

mailto:contact@sourcefabric.org
http://forums.sourcefabric.org
http://docs.jquery.com/Tutorials:How_jQuery_Works
http://code.google.com/apis/libraries/devguide.html#jqueryUI
http://docs.jquery.com/Downloading_jQuery

2. <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.5.2/jquery.m
in.js"></script>

3. <script>!window. jQuery && document.write (unescape ('%$3Cscript src="http:
//{{ S$gimme->publication->site }}/templates/set_thejournal/_js/jquery-1.5
.2.min.js"$3E%$3C/script%3E'))</script>

5. <script src="http://{{ S$gimme->publication->site }}/templates/set_name/
_Js/functions.js"></script>

Your part of the magic is created inside the functions.js file:

1. $(document) .ready (function () {

3. hi

If you need to place a piece of jQuery inside some particular template, just use the <script>
tag:

1. <script type="text/javascript">$ (document) .ready (function () {

N

3. });</script>

jQuery, like other JavaScript frameworks, is a very handy tool to make your designs work,
so that you can concentrate on other things. Here is, just for example, a small piece of code
to make an "Increase/Decrease Font Size" control. First, the JavaScript, then the template
code:

functions.js

1. var articleBox = $(".block-article");
2. wvar originalFontSize = $(articleBox) .css('font-size');
3. // Increase Font Size
4. S$("alhref=#zoomin]") .click (function () {
5. var currentFontSize = $(articleBox) .css('font-size');
6. var currentFontSizeNum = parseFloat (currentFontSize, 10);
7. var newFontSize = currentFontSizeNum*1.1;
8. $ (articleBox) .css ('font-size', newFontSize);
9. return false;
10. 1)
11. // Decrease Font Size
12. S$("alhref=#zoomout]") .click (function () {
13. var currentFontSize = $(articleBox) .css('font-size');
14. var currentFontSizeNum = parseFloat (currentFontSize, 10);
15. var newFontSize = currentFontSizeNum*0.9;
16. $ (articleBox) .css('font-size', newFontSize);
17. return false;
8. 1)
article-cont.tpl
1. <div class="block-fonts-control">
2. Increase / Decrease font
3. </div>
4. e
5. <div class="block-article">
6. {{Sgimme->article->intro}}
7. {{Sgimme—>article->full_text}}
8. </div>

140

USING PHP IN YOUR TEMPLATES

The {{ php }} tag allows PHP code to be embedded directly into the template. This is for
advanced users only, not normally needed and not recommended. The following
information was taken from http://www.smarty.net

Example PHP code within {{ php }} tags:

1 {{ php }}

2 // including a php script directly from the template.
3. include ('/path/to/display_weather.php');

4 {{ /php }}

PASSING ON VARIABLES BETWEEN $GIMME AND PHP

When using PHP, you might want to work with $gimme values inside PHP, as well as pass
on PHP variables to the template. In order to do this, you need to assign the variables first,
then you can access them inside PHP. Important: use backticks " in the assign function.
Here's a little example:

Assigning a variable in the template to use with PHP

{{ assign var="profile_email" value="S$gimme->comment->reader_email’ }}
{{ php }}

$profile_email = $this->get_template_vars('profile_email');

print $profile_email;

{{ /php }}

Note: there seems to be no way to pass on variables from an included file into the parent.
We could not figure it out. If you can, please add your code here!

Assign a variable in PHP to use in the template

{{* output the variable in the template *}}
{{$varX}} is my favourite ice cream :-)

1. {{* a {{php}} block that assigns the variable $varX *}}
2. {{php}}

3. Sthis—>assign ('varX', 'Toffee');

4. {{/php}}

5.

6.

141

http://www.smarty.net

43 PULLDOWN MENU WITH SUPERFISH
USING JQUERY

Download and documentation: http://users.tpg.com.au/j_birch/plugins/superfish/

Pulldown menus with sub-menus opening on mouse-over are very popular. We
recommend using Superfish for elegance, flexibility and SEO compatible design. We show
you how to add this to your Newscoop publication in five simple steps.

Superfish is a jQuery menu plugin developed by Joel Birch which adds neat usability to an
existing CSS drop-down menu (so it degrades gracefully without JavaScript). You can see it
in action at www.sourcefabric.org. Go to the Superfish website for more details, examples
and documentation. Download the zip-file before we start.

In our example, we use the Template Package "Ushahidi Cooker". The Superfish navigation
will be added beneath the header and above the breadcrumbs. You can download the
"Ushahidi Cooker" at www.sourcefabric.org under Products > Newscoop > Templates.
Without the pulldown menu, the design looks like this:

About | Help | Newscoop

Ushahidi Cooker

Location and Map Directory with Geographic Data Feed (KML)

Home
Browse maps by category KL Feed for ol
locations in this
publication
Hospitals Libraries Universities
KML-Feed for all Hospitals OKML—FEEG for all Libraries OKM\;FE‘EG for all Universities
In this section: In this section: In this section:
Guatemala (1) / Berlin (4) / Guatemala (1) / Berlin (3) Prague (2) / Berlin (6)

Praaue (3) / Toronto (5)

The "Ushahidi Cooker" is a directory of maps. We will now improve usability with a
pulldown menu.

After you downloaded the Superfish zip-file, fire up your text editor and open the
example.html file.

I. Adding JavaScript and CSS links to header

When you open the file example.html in the Superfish zip, you will see these lines in the
header of the document, linking in the CSS files, the JavaScript files and initialise the jQuery

plugin:

1. <link rel="stylesheet" type="text/css" href="css/superfish.css" media="sc
reen">
<script type="text/javascript" src="js/jquery-1.2.6.min.Jjs"></script>
<script type="text/javascript" src="js/hoverIntent.js"></script>
<script type="text/javascript" src="js/superfish.js"></script>
<script type="text/javascript">
// initialise plugins

jQuery (function () {

jQuery ('ul.sf-menu') .superfish();

W oUW N

142

http://users.tpg.com.au/j_birch/plugins/superfish/
http://www.sourcefabric.org
http://www.sourcefabric.org/

9. b i
10. </script>

Following the recommended folder structure described in an earlier chaper, | change these
to:

1. <link rel="stylesheet" type="text/css" href="/templates/set_ushahidicooke
r/_css/superfish/css/superfish.css" media="screen">

2. <script type="text/javascript" src="/templates/set_ushahidicooker/_js/jqu
ery-1.2.6.min.js"></script>

3. <script type="text/javascript" src="/templates/set_ushahidicooker/_js/hov
erIntent.js"></script>

4. <script type="text/Jjavascript" src="/templates/set_ushahidicooker/_js/sup
erfish.js"></script>

As you can see in this example, Superfish comes with a jQuery file (jquery-1.2.6.min js).
Note: there is a new folder now inside _css by the name of superfish with a subfolder css.
Superfish has a css and an images folder, they both go into the new superfish folder. You'll
make your life easier if you keep files in separate folders.

These changes need to be added in the sub-template for the header. For the "Ushahidi
Cooker" this is:

set_ushahidicooker/_tpl/header.tpl

Because this file already calls jQuery (see below), | leave this line out. | add the lines just
beneath the linked jquery.min.js and add the initialising JavaScript before the header closes.

1. <script type="text/Jjavascript" src="http://ajax.googleapis.com/ajax/libs/
jquery/1l/jquery.min. js"></script>

2. <!-- Superfish files —-—>

3. <link rel="stylesheet" type="text/css" href="/templates/set_ushahidicooke
r/_css/superfish/css/superfish.css" media="screen">

4. <script type="text/Jjavascript" src="/templates/set_ushahidicooker/_js/hov
erIntent.js"></script>

5. <script type="text/javascript" src="/templates/set_ushahidicooker/_js/sup
erfish.js"></script>

6. <script type="text/javascript">

7. // initialise plugins

8. jQuery (function () {

9. jQuery ('ul.sf-menu') .superfish () ;
10. b

11. </script>

12. </head>

2. Copying files to correct folders

Create the folder superfish inside _css and move the css and images folder into is. These
are the files and folders you should now have:

set_ushahidicooker/_css/superfish/css/
- superfish.css
— superfish-navbar.css
- superfish-vertical.css
set_ushahidicooker/_css/superfish/images/
- arrows—-ffffff.png
— shadow.png

g oUW N

Also move the JavaScript files into the _js folder.

143

3. Create the sub-template to build the navigation

The file you create is called sf-menu.tpl and is saved inside set_ushahidicooker/ tpl/

4. Generate the menu HTML with Newscoop

In our case, we are listing the sections as the visible menu items running horizontally, and
the articles in each section are in the pulldown item. The code inside sf-menu.tpl looks like
this:

1. <ul class="sf-menu">

2. {{ list_sections }}

3.

4., {{ $gimme->section->name }}
5. {{ list_articles }}

6. {{ if S$Sgimme->current_list->at_beginning }}

7.

8. {{ /if 1

9.

10. {{ $gimme->article->name }}
11. </1li>

12. {{ if $gimme->current_list->at_end }}

13.

14. ({ /if }}
15. {{ /list_articles }}

16. </1li>
17. {{ /list_sections }}
18.

Again, the same list. Now we focus on the Newscoop action that is taking place:

List all sections and open a list item:

1. {{ list_sections }}
2.

Create a link to the section, displaying the section name:

{{ $gimme->section->name }}

List all articles. These will be the articles inside the current section from the list_section
command. In other words: only the ones in the section we just printed:

{{ list_articles }}

Now we open another unordered list (ul). But only when we start with the listing of
articles:

1. {{ if S$gimme->current_list->at_beginning }}
2.
3. {{ /if }}

Now the articles are listed as list items:

1. <1li>
{{ $gimme->article->name }}
3. </1li>

N

Then we close the unordered list, once we reached the last item and finish list_articles:

1. {{ if S$gimme->current_list->at_end }}
2.

144

3. {{ /if }}
4. {{ /list_articles }}

Now we have left the sub-loop of articles, we are back again with the section. We close the
list item and then the section:

[

</1li>
2. {{ /list_sections }}

Note: if a section is empty, the sub-list will not be built by Newscoop.

5. Include sf-menu.tpl in the page

You can call this page now anywhere you want with:

|{{ include file="set_ushahidicooker/_tpl/sf-menu.tpl" }} I

The screenshot show the Superfish pulldown at the end of the template _tplititle.tpl. Open
the file title.tpl and add this line at the end. Then it should end like this:

<h1>{{ $gimme->publication->name }}</hl>

Location and Map Directory with Geographic Data Feed (KML)
</div>

{{ include file="set_ushahidicooker/_tpl/sf-menu.tpl" }}

U W N

Done. Now you could adjust the CSS files if you like. If you don't, the Superfish will look like
this:

About | Help | Newscoop

Ushahidi Cooker

n and Map Dire with hic Data KML)
Hospitals Libraries Universities Airports Restaurants
Minsk
Home
Berlin
Browse maps by category KNLF eed for ol
locations in this
publication
Hospitals Libraries Universities
@KML-FEEd for all Hospitals gmweeu for all Libraries g KML-Feed for all Universities

The "Ushahidi Cooker" now has a pulldown menu, showing the city maps for each section.

145

44 TABS WITH JQUERY

jQuery tabs are an efficient way to show content like Most Recent Articles or Most Recent
Comments in one place. You can read a lot about the jQuery Ul Tabs widget at their site,
http://jqueryui.com/demos/tabs/

Here is an example jQuery tab (see the chapters on Most Recent Articles or Most Recent
Comments to see how those are generated):

NOCNEGHHE HOBOCTH TMABHBIE TEMbI

A "BAK™ natpadye CnbIHIUE Nepacnen kaner
21 anpena 2011r

2 gBenapyckan acaup AUBIA HyYRHENICTAY: pauyqa
NpaT3cTYE CyNpaUs WMETRK: dakTal nepacneny
seypHamcTaY | Chl, Ak agsHSYS0ULE SN0 WHIR SSCER Y
Benapyci. 501

B BapaHoBHYCKOM pailoHe 08BOpOBANH OB (PYPbI
21 anpena 2011r

Moks EORMTENM CNEAM, HEMSESCTHEIS CIMAW BCH CONARKY ©
OAHOMD SE TOMOEKNA 1M NOXMTHMAK SENACHOE KONSCO C 4oy rorn.

Hurens BapaHoBHUCKOT 0 paHoHa NOBPEONN OBe
MAWKHLI 33 10, 4T0 BOOHTENH 0TKA3aNHCh 0o NoaBe3TH

21 anpena 2011r

MapeHE HACTONEKD SKTMEHD «MNDCOE SN Ha JOpare, 4To
F]EISEMJ'I nofoEoe cTeKND DHHDEI HMHOMEPDK WM MO AN K2aNoT
B TON,

B bapaHoBH4Yax «BMB» cOHN NeHCHOHEPKY

21 anpena 2011~

75-neTHAA MP0HAHES MCAOMTANMMPOESHS C© GHMarHO30m
SAKPBITEA HEPENHO-MOIMESA TREEMAE.

Here's the jQuery part:

1. $(function () {
2. S ('#container—-1 ul') .tabs();
3. hi

The rest is done inside Newscoop templates.
Here's the logic:

1 <div id="container-1">

2

3

4. Title 1</1i> {{* first tab title *}}
5. Title 2</1li> {{* second tab title *}}
6

7

8. <div id="fragment-1">

9. {{* first tab content *}}
10. </div>
11.
12. <div id="fragment-2">
13. {{* second tab content *}}
14. </div>
15.
16. </div>

http://jqueryui.com/demos/tabs/

And here's the actual example:

1
2.
3.
4

o

O 0 ®W -J o

12.

13.

25.

26.

<div id="container-1">

 </1li> {{* first tab title *
b}
 </1i> {{* second tab title
*1}

<div id="fragment-1"> {{* first tab content *}}
{{set_section number="1"}}
{{list_articles length="12" constraints="onfrontpage is off onsection is
on" ignore_issue="true"}}

<h4>{{ Scampsite->article->name}}</
a>{{if S$campsite->article->has_video}}<i class="ico video"></i>{{/if}}{{i
f $Scampsite->article->has_photo}}<i class="ico photo"></i>{{/if}}{{if $ca
mpsite->article->has_audio}}<i class="ico audio"></i>{{/if}}</h4>

<p class="container-date">{{$campsite->article->publish_date|camp_date_
format:"%d %M $Y."}}</p>

<p>{{S$campsite->article->Intro_front}}{{if $campsite->article->comment_
count>0}}<a href="{{uri options="article"}}#comments" class="comments_cou
nter">{{$campsite->article->comment_count}}{{/if}}</p>
{{/list_articles}}
{{set_default_section}}
</div>

<div id="fragment-2"> {{* second tab content *}}
{{local}}
{{unset_issue}}
{{list_issues length="2" order="bynumber desc"}}
{{list_sections constraints="number greater 9 number smaller 70"}}

{{1list_articles length="4" constraints="topic is \ :ru" order="bynumber
desc"}}

<h4>{{$campsite->article->name}}{{if $campsite->article->has_video}}<i class="ico video"></i>{{/if}}{{if
$Scampsite->article->has_photo}}<i class="ico photo"></i>{{/if}}{{if S$cam
psite->article->has_audio}}<i class="ico audio"></i>{{/if}}</h4>

<p class="container-date">{{$campsite->article->publish_date|camp_date_
format:"%$d %M %Y."}}</p>

<p>{{Scampsite->article->intro}}{{if $campsite->article->comment_count>
0}}
{{Scampsite->article->comment_count}}{{/if}}</p>

{{/list_articles}}
{{/list_sections}}
{{/list_issues}}
{{/local}}
</div>

</div>

147

45 TICKER WITH JQUERY

Do you want a BBC-style ticker like the one on http://wadr.org/ driven by Newscoop? Of
course you do!

WADR Highlights ~ Céte d'lvoire, le président Ouattara héte de I'Ass_

Everything important is in this code:

1. <div id="ticker-wrapper" class="no-js">

<ul id="js-news" class="js-hidden">

3. {{ list_articles length="5" order="bypublishdate desc" constraints="sec
tion is 5" }}

N

4. <li class="news-item">

5. {{ $gimme->article->name }}

6. </1li>

7. {{ /list_articles }}

8.

9. </div>

This code selects the last five published articles from section number 5 and creates an
unordered list of article names, also linking them to the full article page.

Add some jQuery magic:

$ (document) . ready (function () {
$("#js-news') .ticker ({
titleText: 'WADR Highlights'
)i
b

U W N

The engine behind this is the jQuery News Ticker (http://www.jquerynewsticker.com/), so
be sure to have all necessary includes in their place, in _html-head.tpl

1. <!-- Grab Google CDN's jQuery. fall back to local if necessary ——>
2. <script src="/ajax.googleapis.com/ajax/libs/jquery/1.5.1/jquery.js"></scr
ipt>

3. <script>!window. jQuery && document.write (unescape ('%3Cscript src="http://
{{ $gimme->publication->site }}/templates/js/jquery-1.5.1.min.js"%$3E%3C/s
cript%3E'))</script>

4. <script type="text/javascript" src="http://{{ $gimme->publication->site }
}/templates/Jjs/Jjquery-ui-1.8.10.custom.min. js"></script>

5. <script type="text/javascript" src="http://{{ $gimme->publication->site }
}/templates/js/jquery.ticker. js"></script>

and also the css file that belongs to it:

<link type="text/css" rel="stylesheet" href="http://{{ $gimme->publication->si
te }}/templates/css/highlights.css" />

This is of course just one of hundreds of different solutions that you can find on the
Internet, so feel free (and encouraged) to explore and play with other toys!

148

http://wadr.org/
http://www.jquerynewsticker.com/

46 IMAGE GALLERIES WITH JQUERY

This example is using a specific gallery solution working with jQuery. Once you understand
the logic behind the code, you can use any gallery you want. Just download the package and
add Newscoop template code where needed. This chapter will show you how it's done.

Our gallery example will display a number of images attached to an article in your
publication. Again, you can modify the logic easily and, for example, call in one image from a
list of articles instead.

Start with attaching a number of Images to an Article, which you want to show to the world.
In this case we think of the Article as a container for your images. All you need to do is
list_article_images and decide, how you want them to show up (Lightbox, Slimbox,
whatever) - and that's it!

An important thing before you start is to decide what size (in pixels) your images and
thumbnails will have. You will need these numbers set to make all images and thumbnails
appear unified.

It's up to you to decide which tool you will use to make your images shine. In this example
we will use Fancybox (http://fancybox.net/) and the jQuery plugin. But you are not limited in
any way, and can choose any gallery you like - Newscoop will just provide images for your
favourite plugin.

SIMPLE ARTICLE IMAGE GALLERY

This type of image gallery could be used to show additional images, which are part of an
Article, but do not fit in the main text.

Here's a real life example (http://ganc-chas.by/by/page/history/323) of how it's done (you can
copy & paste it to your page, and edit it later):

1. {{list_article_images columns="4"}}

2. {{if $gimme->current_list->count > 1}}

3. {{if Sgimme->current_list->at_beginning}}

4. <div class="image-gallery-title">Article Images</div>
5. <div class="image-gallery-container">

6. {{/if}}

7. {{if Sgimme->image->article_index > 2}}

8. <a href="{{uri options="image"}}" rel="gallery" class="gallery_thumbn

ail" title="{{$gimme->image->description|escape}}">
9. ima
ge->description|escape}}" width="100" height="100" />

10.

11. {{/if}}

12. {{if Sgimme->current_list->at_end}}

13. </div>

14. {{/if}}

15. {{/if}}

16. {{/list_article_images}}

17.

18. <script type="text/javascript">

19. $(document) .ready (function () {
20.
21. $("a.gallery_ thumbnail") .fancybox ({
22. type: 'image',
23. titlePosition: 'inside',
24. transitionIn: 'none',

149

http://fancybox.net/
http://ganc-chas.by/by/page/history/323

29.

30.
31.
32.

transitionOut: 'none',

centerOnScroll: 'true'
b
$("a.gallery_thumbnail") .live ("mouseenter", function() {$ (this) .animate ({op
acity:1},200);1});
$("a.gallery_thumbnail") .live ("mouseleave", function () {$ (this) .animate ({op
acity:0.8},200);1});

i
</script>

Let's now take a look at parts of code:

oUW N

{{list_article_images columns="4"}}
{{if Sgimme->current_list->count > 1}}
{{if $gimme->current_list->at_beginning}}
<div class="image-gallery-title">Article Images</div>
<div class="image-gallery-container">
{{/if}}

We want to have article images placed in 4 columns. First, we check if the Article has images
attached. Then we provide a header for the gallery and container <div> element.

{{if Sgimme->image->article_index > 2}}
<a href="{{uri options="image"}}" rel="gallery" class="gallery_thumbnai
1" title="{{$gimme->image->description|escape}}">
image
->description|escape}}" width="100" height="100" />

{{/1if}}

In this example we will list only images with numbers 3 and higher - this is done to separate
gallery images from the main article images. You can decide to have images for the gallery
numbered 100 and above - it's up to you.

We need to provide Fancybox with a link to an original image (full size), and also a thumbnail
image (&ImageRatio) to show to the user. We also supply class & rel names for
Fancybox to define a group of image objects that should be used for the gallery. Other
Image properties could also be included, like description in the above example. Finally, we
close the list:

U W N

{{if $gimme->current_list->at_end}}
</div>
{({/1if}}
{{/if}}
{{/list_article_images}}

That's pretty much it for Newscoop. Now let's go down to the jQuery part:

1.
2.
3.
4.
5.
6.
7.
8.
9.
0.
1.

12.

13.

150

<script type="text/javascript">
$ (document) .ready (function () {

$("a.gallery_thumbnail") .fancybox ({

type: 'image',

titlePosition: 'inside',

transitionIn: 'none',

transitionOut: 'none',

centerOnScroll: 'true'
1)
$("a.gallery_thumbnail") .live ("mouseenter", function() {$ (this) .animate ({op
acity:1},200);1});
$("a.gallery_thumbnail") .live ("mouseleave", function() {$ (this) .animate ({op
acity:0.8},200);1});

4. }1);
15. </script>

This example assumes that you already read the Fancybox HowTo (http://fancybox.net/howto)
and included all necessary jquery and fancybox libraries. The rest is pretty simple - you just
need to fire up the plugin, using jquery selector (a.gallery_thumbnail) and provide it with
the different options you want to have.

Here we also added a few lines of code to make our thumbnails look even fancier. So the
final result should look like this:

And when you click on an image, you have a bigger one with a description and arrows to
navigate through the others:

= Jaragqeik 3AMCa HaTanna Mapasel, kal pacnicaus "managatoHas”,
NpelExans 5 FaHUaEN

ADVANCED IMAGE GALLERIES

You can also make an advanced presentation of Images, using a few more lines of code and
plugins. The approach should be the same:

e Provide a list of links to full-size images (<a href="{{ uri options="image" }}"...)
e Provide a list of thumbnail images (<img src="{{ uri options="image"
P&ImageWidth=100" width="100" ... />)

For example, you can combine thumbnails + average size images + full-size images:

151

http://fancybox.net/howto

152

47 CALENDARS WITH JQUERY

Usually you will want to use a calendar to show a visual presentation of published articles in
the archive. In Newscoop, we added a special function to provide a Calendar control, which
will highlight all days that have articles (or issues) published. When a user clicks on a date, a
link action fires up to open a defined URL with an additional parameter date. It could be
used to address an archive template and sort articles according to the provided date.

The calendar function is based on the jQueryUl widget Datepicker
(http://jqueryui.com/demos/datepicker/). So the first thing to do will be to include all
required jQuery libraries:

1. <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/
jquery/1.5.2/jquery.min. js"></script>

2. <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/
jqueryui/1.8.11/jquery-ui.min.js"></script>

3. <link type="text/css" href="http://ajax.googleapis.com/ajax/dlibs/jqueryu
i/1.8.11/themes/base/jquery-ui.css" rel="stylesheet" />

4. <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/
jqueryui/1.8.11/118n/jquery.ui.datepicker-ru.min. js"></script>

As you can see in this example, we included all libraries from Google's CDN. You can use
your own custom libraries, downloaded from the jQuery site. The last one is only required
if you want to show a calendar in a language other than English. By default, the Calendar will
be presented in the current site language. A function detects what language the website
content is, and therefore what language the Calendar will be.

The following construction will create a Calendar control:

{{ calendar container="callContainer" url="/?tpl=archive.tpl" style="my_calenda
r" min_date="2009-03-01" max_date="2009-03-31" clickable_dates="articles" }}

e container: This attribute is mandatory. It allows you to define an unique HTML
identifier (id) for the calendar container.

e url: This attribute is mandatory. Define the action link of the Calendar once the user
clicks a date.

o clickable dates: This attribute is optional. There are two possible values for this
attribute: "articles" and "issues”, with the latter being the default. If you pass "articles",
the Calendar will show as highlighted all dates where at least one article is published
(publish_date). If you pass "issues" or nothing at all, thr Calendar will show as
highlighted all dates when an issue has been published.

e style: This attribute is optional. Sets a custom CSS class for the calendar container. If
it is not defined, the default class "calendar" will be used.

e min_date: This attribute is optional. It sets the Calendar's minimum selectable date.
The date format should be "yyyy-mm-dd".

e max_date: This attribute is optional. It sets the Calendar's maximum selectable date.
The date format should be "yyyy-mm-dd".

The resulting output will be like this (remember, we included the Russian language in the
example above):

153

http://jqueryui.com/demos/datepicker/
http://code.google.com/apis/libraries/devguide.html#jqueryUI

o MapT 2009 o
MNH Br Cp Yt It Cb Bc
27| 28

You can then style the Calendar the way you want it to be (remember, we used the class
name "my_calendar"). Also, the look is based on the Ul theme that you use, so you can
adjust the theme according to your needs (we used the base theme in this example).

The source code of the Calendar output is the following:

1. <!-- Begin Calendar widget //-—>

2. <div class="my_calendar">

3. <div id="callContainer"></div>

4. <script type="text/javascript">

5. $(function() {

6. var issueDates = new Array();

7. var articleDates = new Array("2009-03-27","2009-03-28");

8. S$.datepicker.setDefaults ($.datepicker.regional["en"]);

9. $("#callContainer") .datepicker ({

10. dateFormat: "yy-mm-dd",

11. minDate: "2009-03-01",

12. maxDate: "2009-03-31",

13. beforeShowDay: function (displayedDate) {

14. var dDate = "";

15. var dDay = displayedDate.getDate();

16. var dMonth = displayedDate.getMonth() + 1;

17.

18. if (dbay < 10) dbay = "O" + dDay;

19. if (dMonth < 10) dMonth = "0" + dMonth;

20 dDate = displayedDate.getFullYear() + "-" + dMonth + "-
" + dDay;

21

22. for (i = 0; 1 < issueDates.length; i++) {

23. if (dDate == issueDates[i]) {

24. return [false,"ui-state-active",""];

25. }

26 }

27 for (i = 0; i < articleDates.length; i++) {

28 if (dDate == articleDates[i]) {

29 return [true, "ui-state-active", ""];

30 }

31. }

32. return [false, ""]; // disable all other days

33. },onSelect: function (selectedDate) {

34. var contentDates = new Array("2009-03-27","2009-03-28")

35. for (var i in contentDates) {

36. if (selectedDate == contentDates[i]) {

37 var linkTo = "/?tpl=archive.tpl&date=" + select
edDate;

38. window.location = linkTo;

39. }

42.)i

43. </script>

44, </div>

45. <!--End Calendar widget //-—>

EXTENDING FUNCTIONALITY

You can see that all the hard work of creating the visual presentation is given to jQuery Ul
Datepicker. All we need to do is provide dates in correct format. You can take this
approach and provide any data you want. Just note that it should be readable by the plugin.

Of course, it is much more easier to use a Calendar function supplied in Newscoop, but
sometimes you will need more. Here is how we made a Calendar of PDF versions in the
archive. First we need to provide variables in JSON format. For that purpose we have made
a small template (_json-pdf-items.tpl):

1. {

2. M"pdf":{

3. {{list_articles constraints="type is pdf issue greater 1 section is 300
publish_date greater 1900-01-01"}}

4. "{{Sgimme->article->publish_date|date_format:"$Y-sm-%d"}}":{

5. "link":

6. "{{list_article_attachments length="1"}}http://{{Sgimme->publicat

ion->site}}{{uri options="articleAttachment"}}{{/list_article_attachments
Py

7. "title":" {{Sgimme->issue—>name}} ({{$gimme->issue->number}}) {{$
gimme->issue->publish_date|camp_date_ format:"$d.%m.%Y"}} — pdf"}{{if !$g
imme->current_list->at_end}}, {{/if}}{{/list_articles}}

8. }

9. }

Next, we need to read variables from that template and save them for jQuery. Actually, we
use a cron-job to grab the data and put it into the .json file. But it could also be done
directly, addressing the template:

1. /* Datepickers */

var pdf_date;

3. $.ajax({async:false,dataType: 'json',url:'/?tpl=_json-pdf-items.tpl', succe
ss: function(d) {pdf_date=d;}});

N

The contents of the JSON-formatted file will be something like this:

1. |

2. "pdf": {

3. "2010-06-29":{"1ink":"http://ganc-chas.by/attachment/000000026.pdf", "
title":" 25(391) 17.06.2010 - pdf"},

4. "2010-06-04":{"1ink":"http://ganc-chas.by/attachment/000000025.pdf", "
title":" 23(389) 04.06.2010 - pdf"}

5. }

6. '}

And here's a jQuery part of the stuff (we use a slightly modified version which could be
found at http://ganc-chas.by/templates/js/functions.js):

1 // PDF Archive Calendar

2 S ("#PDFArchive") .datepicker ({

3 changeMonth: true,

4. changeYear: true,

5 beforeShowDay: function (d) {

6 var date = $.datepicker.formatDate ("yy-mm-dd",d) ;
7 show=false; ;caption=""; link="#";

155

http://ganc-chas.by/templates/js/functions.js

8. if (pdf_date.pdf[date]) {

9. show=true;
10. style="ui-state-attention active";
11. caption=pdf_date.pdf[date].title;
12. link=pdf_date.pdf[date].link;
13. }
14. return [show,style,caption,link];
15. }
16. });

The final output will be a small nifty Calendar containing all your PDF versions (you can see
it in action at http://ganc-chas.by/by/page/archive/):

APXIY PDF

O [Yape. w200 v O

MM AF Cp Yo M GG Ha

Briryck ME23(339) a4 04.06,2010 - cnamMnagaue pdf

Calendar interface using jQuery.

156

http://ganc-chas.by/by/page/archive/

48 USING POLLS WITH AJAX

In this chapter you will find an advanced way to use the polls provided with Newscoop.
Using AJAX and jQuery, the user interaction becomes smooth, and no visible page reload is
required to add a vote and display the poll results. Any modern jQuery version does the
trick, and needs to be called in the header of the page. You can find the documentation of
the original templates on the Sourcefabric website, in the wiki.

First, we will need to list the current Poll, in our case, the latest one. When loading the page,
no poll action has happened yet (meaning: voting) so we display the poll. And most
importantly, a DIV container should be defined, which will be used to send and receive data
via AJAX.

{{list_polls length="1" order="bynumber desc"}}

{{if !$gimme->poll_action->defined}}
<p class="title">Poll of the day</p>
<p class="poll-question">{{$gimme->poll->question}}</p>
<div id="poll" class="poll">

{{/if}}

g o0 WN R

Next we need to check if the poll is still open to votes, and if no data is sent yet. We do not
use a submit_button, as the data will be sent by an AJAX call.

1 {{if $gimme->poll->is_votable && !$gimme->poll_action->defined}}
2 {{poll_form template="poll.tpl" submit_button=false}}
3. {{list_poll_answers order="byOrder asc"}}
4 {{pollanswer_edit}}{{$gimme->pollanswer->answer}}

5 {{/1list_poll_answers}}

6 <input type="submit" id="submit_poll" class="button" value="I think so!"
/>

{{/poll_form}}

~

The same template is used to provide output, if the data was sent by the user.

1. {{else}}

2. <p>Voted: {{$gimme->poll->votes}}</p>

3. {{list_poll_answers order="byOrder asc"}}

4. <div class="answer">{{$gimme->pollanswer—->percentage|string_format:"$%
d"}}%: {{ $gimme->pollanswer->answer }}

5. <div style="width: {{$Sgimme->pollanswer—>percentage|string_format:"%
d"}}%;background: #5d4040; "> </div>

6. </div>

7. {{/list_poll_answers}}

8. {{/if}}

And finally: the closing tag.

1 cco

2 {{if !$gimme->poll_action->defined}}
3. </div>

4 {{/if}}

5 {{/list_polls}}

The jQuery part of the code is pretty small. We use $.post to parse the form data, send it
via AJAX to the server, and place the resulting output where it should be (<div id="poll">).

[1. $(document) .ready (function () {

157

[

O W ®WUdo U WN

$ ("#submit_poll') .click (function() {

$.post (
$ ('form[name=poll] ') .attr ("action"),
S ('form[name=poll]"') .serialize(),

function(data) {$ ('#poll') .html (data) ;
b
return false;
1)
b

Below you can see the entire template poll.tpl, which you can include in your page.

W J oy U WwWwN

{{list_polls length="1" order="bynumber desc"}}

{{if !$gimme->poll_action->defined}}
<p class="title">Poll of the day</p>
<p class="poll-question">{{$gimme->poll->question}}</p>
<div id="poll" class="poll">

{{/if}}

{{if Sgimme->poll->is_votable && !$gimme->poll_action->defined}}
{{poll_form template="poll.tpl" submit_button=false}}
{{list_poll_answers order="byOrder asc"}}

{{pollanswer_edit}}{{$gimme->pollanswer—>answer}}

{{/1list_poll_answers}}
<input type="submit" id="submit_poll" class="button" value="I think so!

" />
{{/poll_form}}

{{else}}
<p>Voted: {{$gimme->poll->votes}}</p>
{{list_poll_answers order="byOrder asc"}}

<div class="answer">{{$gimme->pollanswer->percentage|string_ format:"$
d"}}%: {{ $gimme->pollanswer—>answer }}
<div style="width: {{$gimme->pollanswer->percentage|string_format:"%
d"}}%;background: #5d4040; "> </div>
</div>
{{/list_poll_answers}}

{{/if}}

{{if !$gimme->poll_action->defined}}
</div>

{{/if}}

{{/list_polls}}

<script type="text/javascript">
$ (document) . ready (function () {
S ('#submit_poll').click (function () {

$.post (
$ ('form[name=poll]') .attr ("action"),
$('form[name=poll]"') .serialize(),

function (data) {$ ('#poll') .html (data) ;
1)
return false;
1)
)i
</script>

158

49 WIDGETS: YOUTUBE, VIMEO, TWITTER,
FLICKR & CO.

If you want to include streams from Twitter, Flickr or Vimeo, relax. Just copy and paste
their code into your templates. No magic. You don't need to install any widgets or plugins
to do this. Just use their embed code. If you want to embed a YouTube video, just copy the
embed code into your WYSIWYG editor and save. Done.

Now we cleared the air, and can dive into more interesting ideas...

TWITTER FEED WITH CUSTOM HASHTAG / SEARCH FOR EACH
ARTICLE

Wouldn't it be cool to have a Twitter Feed for each article following a certain Hashtag or
search word related to the story, like #sourcefabric, #climate change, #wadr, #elvis (these
are examples of what your journalists would type in).

Recent Entries
< the] LUXURY *ONLINE ADVERTISERS

ourn =
BREAKS ON RISKS ONLINE
S —r——————— GobtheArhivs | OFFER EXPOSED DEMOGRAPHIC
‘oseemoreentries
vone rouncs svsvess scireon [e wors °

Luxury health breaks on offer

Health
Jane Stockwriter Test Persona

8488 Healthy Holidays Without
RI

An eam movet gracci qualisque. Ea
gloriatur rationibus efficiendi vis, his an
esse adhuc dolor. Sea aperiri alienum
definiebas ad. Sea id quod vide consul, et
qui tractatos scripserit. At labitur

581 Healthy Holidays - Don't Let
voluptaria pri. ack

ge This Holiday!

Alia facilis pericula et his, vix alii dicta /’(Monika46643 Healthy Holidays - Don't
delicata an, an sed option accusam. Et
habeo porro labore mel. Facilisis
Tiberavisse ut est. Dico quas has ne.
Minimum fabellas definitiones quo id, sed
eu altera cetero rationibus. Nemore

Also in Health

City life may be beneficial say doctors

appetere officiis ut sit.

The journalist can set the Hashtag or search term in the Article Edit screen. The template
will check if the field is empty, and then either include the Twitter Feed or not. In our
example, the Article Field for the Hashtag is called twittersearch and needs to be added in the
Newscoop administration interface under Configure Article Types.

1. {{ if S$Sgimme->article->twittersearch|strip_tags|trim !== "" }}
2. <script src="http://widgets.twimg.com/j/2/widget.js"></script>
3. <script>

4. new TWTR.Widget ({

5. version: 2,

6. type: 'search',

7. search: '\"{{ $gimme->article->twittersearch }}\"',

8. interval: 6000,

9. title: '{{ S$gimme->publication->name }} Twitter Service',
10. subject: 'follow: {{ S$gimme->article->twittersearch }}',
11. width: 250,
12. height: 300,
13. theme: {

159

14. shell: {

15. background: '#8eclda',
16. THELELEL!

17. by

18. tweets: {

19. background: '#ffffff',
20. '#444444",

21. links: '#1985b5"'
22. }

23. I

24. features: {

25. scrollbar: false,
26. loop: true,

27. live: true,

28. hashtags: true,

29. timestamp: true,
30. avatars: true,

31. toptweets: true,
32. behavior: 'default'
33. }

34, }).render().start();
35. </script>

36. {{ /if }}

VIDEO EMBEDDING IN CUSTOM SIZES

You can copy and paste embed code into your article without any problems. If you follow
the examples below, you will get an idea how you can have more control over the layout in
the template - and possibly embed the same video in different sizes, depending on where it
is shown. Also, you might not want to include embed code inside the article body for
various reasons, like delivering to different platforms and devices, or copyright.

Recent Entries
L] tb 2] LUXURY *ONLINE ADVERTISERS

‘:’]J[l?lﬁl HEALTH SECURITY TARGET
BREAKSON RISKS ONLINE
teaxtins | OFFER EXPOSED DEMOGRAPHIC
s
HomE PouT\Gsﬁc.lrrEGH HEALTH ENTERTAINVENT SPORTS o

Where to locate your internet start-up

Business
James Q. Reporter Amerigo Vespuce

Watch video in separate window

Also in Business

Advertisers target online demographic

Tax and trade bureau considers alcohol
labeling

Car industry resurgence boosts economy

Private aviation companies take flight

Est dolor dissentias quaerendum ne, per

Credits Sourcefabric
honarnm accncata ot Bt maa mraaei

Vimeo video embed from video ID

In this example the journalist copies and pastes the video ID from the vimeo URL into the
article. The template will check if a video ID is given, and then create the embed code
accordingly - you can control the size in the template. If you take the video embed code
from vimeo, it starts like this:

160

<iframe src="http://player.vimeo.com/video/12790651?title=0&byline=0& po
rtrait=0" width="400" height="225" frameborder="0"></iframe>

If you compare this with the URL, you see that the video ID is the last part of the URL:

http://vimeo.com/12790651

The value the journalist has added to the article is 12790651 in the field vimeoid. Now you
can create the embed code like this:

1. {{ if $gimme->article->vimeoid|strip_tags|trim !== "" }}

2. <iframe src="http://player.vimeo.com/video/{{ $gimme->article->vimeoid }}
?title=0&byline=0&portrait=0" width="300" height="180" frameborde
r="0"></iframe>

3. article->vimeoid }}" target="_bl
ank">Watch video in separate window

4. {{ /if }}

Make sure that the URL in the iframe is on one line.

YouTube video embed from URL

For this example, journalists will copy and paste the share URL from YouTube into an
article field of their story. This way you can display Youtube videos on your site, but
without your journalists embedding code in the WYSIWYG editor field. (This is for various
different reasons; one of them might be the custom size of your space dedicated to the
YouTube embed). You can use the link which YouTube offers by default (click on "share"
under the video):

http://youtu.be/NokMkmthduY

What you need to do then is to extract just the important part NokMkmthduY from the field
and put it in a wrapper with predefined dimensions, transparency options etc. This is how
you can do it:

1. <script type="text/javascript">

2. var embedParts="{{ S$gimme->article->youtubeurl }}".split("/");

3. document.write("<iframe title=\"YouTube video player\" width=\"435\" heig
ht=\"356\" src=\"http://www.youtube.com/embed/"+embedParts[3]+"?wmode=opa
que\" frameborder=\"0\" allowfullscreen></iframe>");

4. </script>

CUSTOM FLICKR STREAM FOR INDIVIDUAL ARTICLES

Imagine a journalist writes an article about an event which has its own flickr account. The
widget below allows you to call in the latest images from that flickr stream and display them
alongside the article. This widget does not show up if a flickr name is not provided by the
journalist.

16l

Recent Entries
Q tb 2] LUXURY *ONLINE ADVERTISERS

‘:)fl;l;ljfljl HEALTH SECURITY TARGET
BREAKSON | RISKS ONLINE
T T — Govtheartivs | OFFER EXPOSED DEMOGRAPHIC
o seemoreentries
HOME POLITICS SCTECH HEALTH ENTERTANMENT SPORTS e

Latest images from »ljubar«

Where to locate your internet start-up

Business (Y
James Q. Reporter Amerigo Vespueei t

Est dolor dissentias quaerendum ne, per \
bonorum accusata at. Et mea graeci)
rationibus, in qui scribentur adversarium A

efficiantur. Ea tantas decore evertitur mei,
pertinax volutpat ocurreret ne quo, unum
interpretaris ut vim. Mucius suavitate vel
et, ut mel dicant mnesarchum. Partem
copiosae patrioque ea usu, ea usu equidem
feugait, nam no veniam minimum.

Labores consetetur in vix, eu vix quando
accusamus assentior. Pri elit gloriatur
interesset ut, per lorem essent urbanitas
in. Eam laudem invenire ea. Pri wisi
constituam eu, ea sed enim partem
timeam, postea aliquip ut vim.

Business

Sit ea vocent legendos delicata. Mei Advertisers target online demographic

homerao dolorem commune an, tale nobis

Tax and trade bureau considers alcohol

In our example, the Article Field for the flickr user name is called flickrname and needs to be
added in the Newscoop administration interface under Configure Article Types.

Firstly, the template checks if the name is set, and if so then (prior to the PHP code) the
value is assigned to a variable of the same name. This is necessary because inside PHP the
environment has no access to the $gimme object. The styling in this example is included in
the code, but you can place it elsewhere. If you want to change the number of images, you
can do this inside the widget by changing $rows and $columns.

1. {{ if S$gimme->article->flickrname|strip_tags|trim !== "" }}

2. <style>

3. .widget-flickr-wrapper, .widget-flickr-wrapper table { width: 100%; }

4. .widget-flickr-wrapper table,

5. .widget-flickr-wrapper table td img { background: #f0f0f0; border: lpx so
lid #e7e7e7; }

6. .widget-flickr-wrapper table td { padding: 10px; }

7. </style>

8. <h3>Latest images from » {{ $gimme->article->flickrname }}«</h
3>

9. {{ assign var="flickrname" value="$gimme->article->flickrname’ }}

10. {{ php }}

11. Srows = 4;

12. Scolums = 3;

13. Sapi = '40a7acB8e64e9bc034d0f72b%a6d4elf3a’;

14. Susername = Sthis->get_template_vars('flickrname');

15. S$total = S$rows * $colums;

16. // get user ID from user name

17. Suser_id = simplexml_load_file ("http://flickr.com/services/rest/?method=f
lickr.people.findByUsername&api_key=".S$api."&username=".$username)->user [
'nsid'];

18. // get images from user ID

19. $xml = simplexml_load_file ("http://flickr.com/services/rest/?method=flick
r.photos.search&api_key=".S$api."suser_id=".Suser_id."s&per_page=".Stotal);

20. 1if (isset ($xml->photos)) {

21. Sphotos = array();

22. foreach ($xml->photos->photo as $photo) {

23. $photos[] = array (

24. 'src' => "http://farml.static.flickr.com/".S$photo['server']."/".$ph
oto['id']."_".S$photo['secret']."_m.jpg",

25. 'link' => "http://www.flickr.com/photos/".$user_id."/".$photo['id']
’

26. 'title' => $photo['title']

162

)i
}
echo "<div class=\"widget-flickr-wrapper\">\n<table border=\"0\" cellpa
dding=\"0\" cellspacing=\"0\">\n";
for ($i = 0; $i < Srows; S$Si++) {
echo "<tr>\n";
for ($3 = 0; $j < Scolums; S$j++) {
$index = $colums * $i + $3;
if (isset ($photos[$index])) {
$photo = $photos[$index];
echo "<td>\n<div class=\"widget-flickr-thumb\">\n<a href=\"".Spho
to['link']."\" target=\"_blank\"><img src=\"".S$photo['src']."\" height=\"
75\" width=\"75\" alt=\"".S$photo['title']."\" />\n</div>\n</td>\n";
} else {
echo "<td> </td>\n";
}
}
echo "</tr>\n";
}
echo "</table>\n</div>\n";
}
{{ /php }}
{({ /if }}

163

50 PROFILE PICTURES: GRAVATAR,
FACEBOOK, TWITTER

Displaying profile pictures alongside comments can make your article a more personal and
engaging space. Below you can find ways to call in images from Gravatar, Facebook or
Twitter.

Gravatar

Gravatar is a widely used service, providing profile images based on an e-mail address. You
can use this service in comments to provide images alongside a comment. If an email is given
by the user, the standard image (80 x 80 pixel) is retrieved by calling PHP from the
template like this:

{{ assign var="profile email" value="$gimme->comment->reader_email’ }}

{{ php }}

Sprofile_email = $this->get_template_vars('profile_email');

print "<img src=\"http://www.gravatar.com/avatar/".md5(strtolower (trim(
Sprofile_email)))."\" />";

5. {{ /php }}

Bw N

If the user does not have a Gravatar account, the default Gravatar logo is displayed. You can
change the size of the image provided by adding a parameter as shown below. Gravatar
images are always square. The following example will deliver an image which is 200 x 200
pixels in size:

1. {{ assign var="profile email" value='$gimme->comment->reader_email’ }}
2. {{ php }}
3. S$profile email = $this->get_template_vars ('profile_email');
4. print "<img src=\"http://www.gravatar.com/avatar/".md5(strtolower (trim(
Sprofile_email)))."2s=200\" />";
5. {{ /php }}
Facebook

Calling an image from Facebook is very straightforward. The example below calls in the
Sourcefabric image:

In order to make this work with comments, you could use the nickname input field and label

it something like "Facebook name (optional)". The code below checks if an image is available
on Facebook, and if not, does not display anything.

1. {{ assign var="profile_ fbname" value='$gimme->comment->nickname’ }}

2. {{ php }}

3. Sprofile_ fbname = S$this->get_template_vars ('profile_fbname');

4. 1if (!preg_match("/error/i", file_get_contents ("http://graph.facebook.com/
".$profile_fbname."/picture"))) {

5. print "<img src=\"http://graph.facebook.com/".S$profile_fbname."/picture
\" />";

6. '}

7. {{ /php }}

164

If you are providing a reader registration form for your publication, you can add a custom

field to the user profile for the Facebook name. In the template you can check if the user is

logged in, and call the image from the Facebook name provided in the user profile.

Twitter

The easiest way to retrieve the profile image from Twitter goes like this:

You can make this work with comments by using the nickname input field and labelling it

something like "Twitter name (optional)". To display the image, include the following code:

if (!empty ($results)) {

print "profile_image_url."\" />";
}

{{ /php }}

O J oUW WN

1. {{ assign var="profile_ twname" value='$gimme->comment->nickname’ }}

2. {{ php }}

3. S$profile_twname = $this->get_template_vars ('profile_ twname');

4. print "";

5. {{ /php }}

You might want to check if the name provided actually does exist:

{{ assign var="profile_ twname" value="$gimme->comment->nickname” }}
{{ php }}
Sprofile_twname = $this->get_template_vars ('profile_twname');
Sapi_call = "http://twitter.com/users/show/".$profile_twname.".json";
Sresults = json_decode (file_get_contents ($api_call));

165

5 I . COMBINING NEWSCOOP AND
SOUNDCLOUD

Newscoop 3.6 includes a plugin for uploading, managing and displaying sound clips which
are stored on the SoundCloud service (http://soundcloud.com/). This function was first
implemented by Sourcefabric for its partner, West Africa Democracy Radio
(http://www.wadr.org), a news and talk radio station which provides programming to 30
affiliates in West Africa. WADR creates 5-6 hours per day of original content, and all of this
content is uploaded to SoundCloud.

There were three major benefits for WADR in using SoundCloud as a distribution channel.

e The SoundCloud distribution network is fast, so listeners do not have to wait a long
time for files to download

e The SoundCloud players allow third parties to embed shows and clips on blogs and
other websites, thus allowing WADR to reach a larger audience than it would if the
clips were stored exclusively on its own site

e SoundCloud's paid premium accounts allow for a large amount of items to be stored
on the service, and the prices were competitive with other hosted solutions

Here is a diagram showing the workflow stages for technical and editorial staff. The first
shows workflow for technical staff:

Technical workflow for SoundCloud

Announcer (studio) Entire 30s recording of Newslink Upload to SoundCloud

@ 44—&-* - B

& >

Technician Technician cuts up recording Upload to SoundCloud
(control room) into individual items

Clips from Technician

SoundCloud have tells editors
the announcer's that clips are
part too. uploaded.

On the editorial side, editors make use of the SoundCloud plugin to attach uploaded clips to
their articles:

166

http://soundcloud.com/
http://www.wadr.org

Editorial workflow for SoundCloud

I Mew article Article items
i Nevscoor” g

Editor The editor logs
into Newscoop

The editor creates The appropiate article
a new article items are added

Attaching Article
SoundCloud items Publishing
lIIIHHHIIII'

SoundCloud tracks Tracks are added by selecting The tracks will then

are added in “Attach” and then selecting appear when the article

the SoundCloud menu individual tracks is published

Using SoundCloud in your templates

Once SoundCloud tracks are uploaded and attached to articles in Newscoop, they can then
be called by the templates just like any other content on the site. The following example lists
any SoundCloud tracks that have been attached to an article and calls the SoundCloud

player.

This directive gets the track's secret URI, which is then passed to the SoundCloud player

for playing out the track:

{{ $soundcloud->track.secret_uri }}

This directive tells Newscoop to list the available SoundCloud tracks for the given article:

{{ list_soundcloud_tracks

article=$gimme->article->number }}

Here is the entire template for listing the available tracks for the article, calling the
SoundCloud player, and setting up the player for the track:

1.
2. <object height="81"
3. <param name="wmode"
4. <param name="movie"
$soundcloud->track.
lse& ></param>
5.

{{ list_soundcloud_tracks article=$gimme->article->number }}

width="100%">

value="transparent">
value="http://player.soundcloud.com/player.swf?url={{
secret_uri }}& show_comments=truesamp;auto_play=fa

<param name="allowscriptaccess" value="always"></param>

6. <embed allowscriptaccess="always" height="81" src="http://player.soundclo
ud.com/player.swf?url={{ $soundcloud->track.secret_uri }}&show_commen
ts=true&auto_play=false& type="application/x-shockwave-flash" wid

th="100%"></embed>
7. </object>

8. {{ /list_soundcloud_tracks }}

167

WORKING WITH SOUNDCLOUD SETS

SoundCloud can also prepare and play groups of tracks (like playlists), which it calls sets. In
the WADR project, every program has a set player, and then every individual broadcast is
added to the set, with the newest broadcast presented at the top of the set.

For its premium customers, SoundCloud provides a special Set Player which can be
embedded instead of a track player. The premium player also allows custom artwork and
dimensions. Here is an example of how Newscoop works with a SoundCloud Mini Player
which handles a set:

=W N e

o U

10.
11.
12.

<div class="miniPlayer">

<object height="300" width="300">

{{ if S$gimme->language->english_name == "English" }}

<param name="movie" value="http://player.soundcloud.com/player.swf?url=ht
tp%$3A%2F%2Fapi.soundcloud.com$2Fplaylists%$2F662124& auto_play=false&am
p;player_type=artwork& ></param>

<param name="allowscriptaccess" value="always"></param>

<param name="wmode" value="window"></param>

<embed wmode="window" allowscriptaccess="always" height="300" src="http:/
/player.soundcloud.com/player.swf?url=http%$3A%2F%2Fapi.soundcloud.com$2Fp
laylists%$2F662124& auto_play=false&player_type=artwork& type="
application/x-shockwave-flash" width="300"></embed>

{{ else }}

<param name="movie" value="http://player.soundcloud.com/player.swf?url=ht
tp%$3A%2F%2Fapi.soundcloud.com$2Fplaylists%$2F714819& auto_play=false&am
p;player_type=artwork& ></param> <param name="allowscriptaccess" value
="always"></param> <embed allowscriptaccess="always" height="300" src="ht
tp://player.soundcloud.com/player.swf?url=http%3A%2F%2Fapi.soundcloud.com
%2Fplaylists$%$2F714819& auto_play=false&player_type=artwork& ty
pe="application/x-shockwave-flash" width="300"></embed>

{({ /if }}

</object>

</div>

For further reference, the SoundCloud APl documentation is available at:

http://developers.soundcloud.com/docs/api

168

http://developers.soundcloud.com/docs/api

52 WORKING WITH FACEBOOK

It's very easy to integrate Facebook's social plugins with Newscoop pages. In most cases, it's
a matter of adding a few lines of the code Facebook provides.

Most of the features that Facebook provides can be implemented in two different ways: the
classic way using the <iframe> tag, and the modern way using JavaScript and XFBML. The
new way of implementing Facebook features has just two lines of code:

1. <script src="http://connect.facebook.net/en_US/all.js#xfbml=1"></script>
2. <fb:facepile href="example.com" width="200" max_rows="1"></fb:facepile>

MAKING YOUR PAGE LOOK GOOD IN FACEBOOK USING OPEN
GRAPH PROTOCOL

Open Graph Protocol makes sure your Newscoop-powered pages are handled by
Facebook in the correct way. If they are implemented right, they can be used on Facebook
profiles under the "Likes and Interests" section.

You'll need to add Open Graph protocol <meta> tags and the Like button to your header
template in order to turn your pages into graph objects. The example below shows which
<meta> tags can be used, and what their content should be.

1. <title>{{ if S$gimme->article->defined }}{{ $gimme->article->name }} | You
r Site

2. {{ else }}Your Site

3. {{ /if }}

4. </title>

5. {{ if Sgimme->article->defined }}

6. <meta property="og:title" content="{{$gimme->article->name|html_entity_de

code | regex_replace:'/&(.*?)quo;/"':"'squot; '} 1" />

<meta property="og:type" content="article" />

8. <meta property="og:url" content="http://{{ $gimme->publication->site }}{{
uri }}" />

9. <meta property="og:site_name" content="YourSite.com" />

N

10. {{ if Sgimme->article->type_name == "news" }}

11. <meta property="og:description" content="{{$gimme->article->deck|strip_
tags:false|strip|escape: 'html':'utf-8"' }}" />

12. {{ elseif S$gimme->article->type_name == "show" }}

13. <meta property="og:description" content="{{$gimme->article->short_descr

iption|strip_tags:false|strip|escape:'html':'utf-8' }}" />
14. {{ /if }}

15. {{ list_article_images }}

16. <meta property="og:image" content="{{ S$gimme->article->image->imageurl }}
"o

17. {{ /list_article_images }}

18. {{ if S$gimme->prev_list_empty }}

19. <meta property="og:image" content="http://{{ $gimme->publication->site }}
/templates/assets/images/logo.png" />

20. {{ /if }}

21. {{ /if }}

We've set up an IF statement that first handles whether an article has been defined. In the
first <meta> tag, we're doing a few things to clean up the text and get it ready for Facebook:

<meta property="og:title" content="{{S$gimme->article->name|html_entity_ decode|r
egex_replace:'/&(.*?)quo; /" :"" '}}" />

169

We're combining three things together in this meta tag:

e adirective to get the article name: $gimme->article->name
® a Smarty function to decode the HTML entity
® a Smarty function to replace any illegal characters

The next one is pretty clear. Our Open Graph type is an article:

<meta property="og:type" content="article" />

The next meta tag is for the URL:

<meta property="og:url" content="http://{{ $gimme->publication->site }}{{ uri }
/>

The ogsite tag is really straightforward:

<meta property="og:site_name" content="YourSite.com" />

The ogidescription can be kind of complicated. In this case, it's conditional depending on the
article type. If the article type is "news", it will display one description from the deck field,
but if the article type is "show" the description will be different, taken from the
short_description field. In the case of "news", it strips out any illegal characters from the deck
field and uses the result as what Open Graph Protocol calls content:

1. {{ if Sgimme->article->type_name == "news" }}

2. <meta property="og:description" content="{{$gimme->article->deck|strip_
tags:false|strip|escape: 'html':'utf-8"' }}" />

3. {{ elseif $gimme->article->type name == "show" }}

4. <meta property="og:description" content="{{$gimme->article->short_descr
iption|strip_tags:false|strip|escape:'html':'utf-8' }}" />

5. {{ /if }}

The final conditions have to do with the display of article images. We're taking the list of
available article images and passing that to Facebook as the potential images that a user
sharing a link can flip through. But if there isn't an image attached to the article (that's the IF
statement for {{ if $gimme->prev_list_empty }} command), then it displays the site logo:

1. {{ list_article_images }}
2. <meta property="og:image" content="{{ $gimme->article->image->imageurl }}
" />

3. {{ /list_article_images }}

{{ if Sgimme->prev_list_empty }}

5. <meta property="og:image" content="http://{{ $gimme->publication->site }}
/templates/assets/images/logo.png" />

6. {{ /if 1}

S

You can get more info about the Open Graph protocol on Facebook's developer pages:
http://developers.facebook.com/docs/opengraph/

ADDING A LIKE BUTTON TO YOUR PAGE

The Like button is the most popular Facebook feature. The team at Facebook made adding a
Like button very easy, by going to a particular page and generating the code needed.

Here's an excerpt from a Newscoop article page template that includes a Like button:

<iframe src="http://www.facebook.com/plugins/like.php?href={{ url|escape:"url"
}}& layout=standard& show_faces=true& width=400& action=recommends&a
mp; font=arial& colorscheme=light" scrolling="no" frameborder="0" allowTransp

170

http://developers.facebook.com/docs/opengraph/

arency="true" style="border:none; overflow:hidden; width:400px; height:px"></if
rame>

In this case, we're using Newscoop to generate the article's URL and pass that to Facebook

so that it knows where to send its users when they see the article in their pages. We're also
adding a Smarty function to escape the URL so that Facebook can handle it in the right way.
That's what's going on in this part:

src="http://www.facebook.com/plugins/like.php?href={{ url|escape:"url" }}

More info about the Like button can be found on the Facebook developer pages:
http://developers.facebook.com/docs/reference/plugins/like/

ADDING A LIKE BOX

The Like Box feature enables Facebook users to bring the "like" activity to their own site.
The Like Box enables readers of your publication to:

e See how many people liked your Facebook page, and which of their friends like it too
o Read recent posts from the Facebook page
® Like the Facebook page with just one click, without needing to visit Facebook directly

Here is an example of a Like Box used in Newscoop templating:

<script src="http://connect.facebook.net/en_US/all.js#xfbml=1"></script><fb:lik
e href="{{ uri options="article" }}" layout="button_count" show_faces="true" wi
dth="450" font=""></fb:like>

The other options allow you to:

e Set the Like Box's width in pixels
e Show your fans' profile pictures (show_faces="true")
e Set the type of button layout (see more about this on the Facebook developer pages)

More information about the Like Box can be found on the Facebook developer pages:
http://developers.facebook.com/docs/reference/plugins/like-box/

ADDING FACEBOOK COMMENTS

The Comments Box feature can help your replace the built-in commenting system of
Newscoop with the one provided by Facebook. Facebook can also provide moderation and
distribution tools with this feature.

The Comments Box can be used only with XFBML and the JavaScript file provided by
Facebook:

1. <div id="fb-root"></div>

2. <script src="http://connect.facebook.net/en_US/all.js#appId=APP_ID& xf
bml=1"></script>

3. <fb:comments href="sourcefabric.org" num_posts="2" width="500"></fb:comme
nts>

More info about Facebook Comments can be found on the Facebook developer pages:
http://developers.facebook.com/docs/reference/plugins/comments/

171

http://developers.facebook.com/docs/reference/plugins/like/
http://developers.facebook.com/docs/reference/plugins/like-box/
http://developers.facebook.com/docs/reference/plugins/comments/

53 WORKING WITH ADVERTISING

Generating revenue with advertisements usually means including code from advertisers or
ad networks in your pages. In Newscoop this means incorporating ads in an existing
template, or creating special templates for different campaigns. As shown in this Cookbook,
there are many ways you can make content related decisions on which advertisement to
include, for example based on article type, keywords, topics, section and so on.

At the end of this chapter you'll find a suggestion about how to handle your own banners.
But first, let's look at external providers.

INCLUDE INSERT CODES FROM A LOCAL OPENX SERVER

Using insert codes from OpenX is quite easy. Once you have OpenX installed, you will
need to define what they call "zones" for your advertising. Once defined, you can copy and
paste the resulting insert code into your template. Here is a sample script for including a
banner ad served from OpenX:

1. <script type='text/javascript'><!--//<![CDATA[
2. var m3_u = (location.protocol=="https:'?'https://openx.YOURSITE.COM/de
livery/ajs.php':'http://openx.YOURSITE.COM/delivery/ajs.php');
3. var m3_r = Math.floor (Math.random()*99999999999) ;
4. if (!document.MAX_used) document.MAX_used = ',';
5. document .write ("<scr"+"ipt type='text/javascript' src='"+m3_u);
6. document .write ("?zoneid=66&target=_top&charset=UTF-8");
7. document .write ('&cb=' + m3_r);
8. if (document.MAX used != ',') document.write ("&exclude=" + docume
nt .MAX_used) ;
9. document .write ('&charset=UTF-8');
10. document .write ("&loc=" + escape (window.location));
11. if (document.referrer) document.write ("&referer=" + escape (docume
nt.referrer));
12. if (document.context) document.write ("&context=" + escape (document.co
ntext));
13. if (document.mmm_fo) document.write ("&mmm fo=1");
14. document .write ("'><\/scr"+"ipt>");
15. //11>--></script>
16. <noscript>
17. <a href='http://openx.YOURSITE.COM/delivery/ck.php?n=alée8b28& cb=I
NSERT_RANDOM_NUMBER_HERE' target='_top'>
18. <img src='http://openx.YOURSITE.COM/delivery/avw.php?zoneid=66&cha
rset=UTF-8& cbo=INSERT_RANDOM_NUMBER_HERE&n=al6e8b28' border='0"' al
="' />
19.
20. </noscript>

For more info on OpenX, check their documentation at
http://www.openx.org/support/documentation

INCLUDE INSERT CODES FROM GOOGLE ADSENSE

Once you have successfully created a publisher account with Google AdSense, you can
copy and paste the insert code into your template with your publisher ID and ad slot info.
Here is an example:

1. <script type="text/javascript">
<!—-
3. google_ad_client = "pub—XXXXXXXXXXXXXXXX";

172

N

http://www.openx.org/support/documentation

4. /* 300x250, created 6/25/09 */

5. google_ad_slot = "YYYYYYYYYY";

6. google_ad_width = 300;

7. google_ad_height = 250;

8. //==>

9. </script>

10.

11. <script type="text/javascript"

12. src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
13. </script>

You can find out more about Google AdSense at http://www.google.com/adsense

HANDLING BANNERS IN NEWSCOOP TEMPLATES

You can also build your own logic for banner ads in your site. In the following example we
will display different banners in different sections.

|. Create banner templates

Inside the folder of your template pack, create a new folder _banners. In this example we
are building banners for the "Ushahidi Cooker" so the folder path is:

set_ushahidicooker/_banners

Inside this folder, create template files with banners. There is no Newscoop code inside
these templates, just simple HTML displaying a banner with link or embedding a Flash
banner - anything you like, we won't explain how to do these. In our example the banner
templates are named:

e banner_hospitals.tpl
e banner_libraries.tpl

2. Create a template to handle the banner display

Inside the same folder, create a file called check banner.tpl. This file contains code similar to
the following (adjust it for your publication):

1. {{ if $gimme->section->number == 10 }}

2. {{ include file="set_ushahidicooker/_banners/banner_hospitals.tpl" }}
3. {{ /if }}

4. {{ if $gimme->section->number == 11 }}

5. {{ include file="set_ushahidicooker/_banners/banner_ libraries.tpl" }}
6. {{ /if }}

This template can be extended to cover more sections.
3. Include the master banner

Now all you need to do is include the check_banner.tpl template in your publication at the
place where you want to display banner ads:

{{ include file="set_ushahidicooker/_banners/check_banner.tpl" }}

Using the Newscoop template language, you can modify the IF condition any way that fits
your publication's needs.

173

http://www.google.com/adsense

54 WAYS TO CREATE ARCHIVES

There are different approaches to creating archives. It can be:

a list of Articles

a list of Issues

a list of PDF versions

a list of Polls

a calendar of Articles / Issues / PDF versions
a search form to look through all materials

You would usually combine different options or make your own, depending on your needs.

GENERAL ARCHIVE TYPE BASED ON ISSUES

This is a very basic and widely used type of Archive. It is convenient even if you have many
issues. You can see an example in our "Journal" template package:

1. <div id="accordion">

2. {{ list_issues constraints="number not 1" order="bypublishdate desc" }}

3. <h3 style="margin-bottom: 20px">{{ $gimme->issue->name }}</
a></h3>

4. <div>

5. {{ list_sections }}

6. {{ list_articles }}

7. {{ if $gimme->current_articles_list->at_beginning }}

8. <h4>{{ S$gimme->section->name

}}</h4>

9.

10. {{ /if }}

11. {{ S$gimme->article->n
ame }} - {{ $gimme->article->publish_date|camp_date_format:"%e %M %Y"

}} - {{ $gimme->article->comment_count }} comment (s)

12. {{ if S$gimme->current_articles_list->at_end }}

13.

4. {{ /if }}

15. {{ /list_articles }}
16. {{ /list_sections }}

17. </div>
18. {{ /list_issues }}
19. </div><!-- /#accordion -->

And after adding just a few lines of jQuery code you get a nice accordion effect:

1. $(function() {
2. $("#accordion").accordion();
3.1

The result will look like this:

174

+ January 2011

boliti
o Eyropean Council candidstes set to be named - 27 December 2010 - 1
comment{s)
o Wintry conditions sweep across Ching - 27 December 2010 - O comment(s)
o Food export duties set to rise - 27 December 2010 - 0 comment(s)
Business

o Private aviation companies take flight - 24 December 2010 - 0 comment(s)
o Tax and trade bureau considers alcohol labeling - 27 December 2010 - 0

comment(s)

o Where to locate your internet start-up - 27 December 2010 - O
commeant(s)

Sci/Tech

o Commercial space fight becomes a reality - 24 December 2010 - 0
comment(s)

COMBINATION OF DIFFERENT TYPES OF ARCHIVES

If you have lots of issues, and especially if you plan to maintain the Archive for a long time,
you might want to have a combination of different types of archives. You can take a look at

an example of how it's done at: http://ganc-chas.by/by/page/archive

Kani nacka, BrikapbICTOYBARLE KANAHOAP LNA NOWYKY apTeikynay ui PDF APKIY APTLIKYTIAY
na paye anyBnikasaHHA.
Kani sam Tpafa axaiicul na
hopMy NALUILIPAHAA NOWYKY HIN3A.
© [Kpaca 8] 2011 %) ©

Mu A§ Cp Su NMr C6 Ha

Wykaue: | J
Mo a; Ty, 0,

BS v

Pava: [] []

APXIY PDF
© [ope. (3] 2010 &) O

ANOWHIA MATIPbIANGI Mw A§ Cp Yu Mr C6 Ha

— Calendar of
p——p— PDF issues

Hamisi FaHLATWY
Taxarnan nagapawsj a 26% [2 |

Toape 1 ANEKTPHK NOAOIPEBIIITCA & BIPLBE MATPO

MNaniema

HstafArticles

Musuut paridna

Tavueeiickan dwpma 8 Yncne nyswwx & ofnNacTy no TRyaoySTRORCTEY
HOBEA BLACTANES «C MCTOKOR WACTON KDECOTSI

¥ G CHOW MR, NYCTo nesaT|

Cousym

B Benapycn OxMaanT wiciaymosenii Gy

HauSawx Genapycn oTnycKkaeT 8 caoGoaK0E NNasakke Kypc pyGnR.
Kptasiua: ¥papn neraniiye uerats abmenit kype pyina
Myvaiisesno OBEWAET BLPONATS CHTYLI NO BANOTE W NPOCHT e
ofiuxaTsoR

175

http://ganc-chas.by/by/page/archive

Implementing a search-based archive is a good practice, as it gives your readers the
opportunity to find the required material in a click. We use an Advanced Search form for
that purpose (please take a look at the Template Reference for more information about
Advanced Search).

archive-search-form.tpl

N

@

10.

11.
12.

14.

15.

16.

17.
18.
19.

<div id="archive_search_form">
<form method="post" action="{{uri}}" name="search_articles">
<input type="hidden" value="{{$gimme->template->identifier}}" name="tpl"
/>
<input type="hidden" value=true name="f_search_articles" />
<fieldset>
<div><label>Find:</label><input type="text" value="{{S$gimme->sear
ch_articles_action->search_phrase}}" name="f_search_keywords" /></div>
<div><label>Search by:</label>

<input type="radio" name="f_search_scope" value="content" checked="
checked" /> text
<input type="radio" name="f_search_scope" value="title" /> title &n
bsp;
<input type="radio" name="f_search_scope" value="author" /> author

</div>
<div><label>Issue:</label>{{camp_select object="search" attribute
="issue"}}</div>
<div><label>Date:</label><input type="text" id="f_search_start_da
te" name="f_search_start_date" /><input type="text" id="f_search_end_date
" name="f_search_end_date" /></div>
<div><input type="submit" class="button-greentl" name="f_search_a
rticles" value="Find" /></div>
</fieldset>
</form>
</div>

To make other search controls (please read the chapter on Using Calendars) and control the
looks and flow we utilize jQuery a lot:

functions.js
1. /* Archive search form & results */
2.
3. S$("form[name=search_articles] select[name=f search_issue] option[value=1]
") .remove(); /* remove first issue from the list */
4. // Submitting a form
5. $('#archive_search_form .button-greentl').live("click", function () {
6. var url = $('#archive_search_form form[name=search_articles]') .attr ("ac
tion") + '?tpl=archive-search-results.tpl';
7. var form = $('#archive_search_form form[name=search_articles]').seriali
ze();
8. $.post (url, form, function(data){$('#archive_search_results').html (data
)it)i
9. return false;
10. });
11.
12. /* Datepickers */
13.
14. // Load results with AJAX if a date was clicked in a calendar
15. $("#ArticleArchive .ui-state-highlight a").live("click", function () {
16. S ("#archive_search_results").load($(this).attr ("href") + 's&tpl=archive
—search-results.tpl');
17. return false;
18. });
19.
20. wvar cs_date;var pdf_date;
21. $.ajax({async:false,dataType:'json',url:'/templates/js/calendar—items. jso
n',success: function(d) {cs_date=d;}});

176

22. $.ajax({async:false,dataType:'json',url:'/templates/js/pdf-items. json',su
ccess: function(d) {pdf_date=d;}});

23.

24. // Article Archive Calendar

25. S$("#ArticleArchive") .datepicker ({

26. changeMonth: true,

27. changeYear: true,

28. beforeShowDay: function(d) {

29. var date = $.datepicker.formatDate ("yy-mm-dd",d);

30. var link = "page url?date="+date;

31. show=false;;caption="";

32. if ($.inArray(date,cs_date.article) !=-1) {

33. var x=0;

34. $.grep(cs_date.article, function(n, i) {if (n==date) x++;});

35. show=true; style="ui-state-highlight active";caption+="Articles foun
d: "+x;

36. }

37. return [show,style,caption,link];

38. }

39. 1)

40.

41. // PDF Archive Calendar
42. $("#PDFArchive") .datepicker ({

43. changeMonth: true,

44, changeYear: true,

45. beforeShowDay: function (d) {

46. var date = $.datepicker.formatDate ("yy-mm-dd",d);
47. show=false;;caption="";link="#";

48. if (pdf_date.pdf[date]) {

49. show=true;

50. style="ui-state-attention active";
51. caption=pdf_date.pdf [date].title;
52. link=pdf_date.pdf[date].link;

53. }

54. return [show,style,caption,link];
55. }

56. });

And the whole process is going on in one template, which receives data and provides
output.

archive-search-results.tpl

First, we need to check if the date parameter was supplied. In this case, we provide a list of
articles published on that date:

1. {{if S$smarty.get.date}}

2. {{assign var="get_date" value=S$smarty.get.date|camp_date_format:"$Y-%m-%d
"1}

3. <div class="header-diag">

4. Materials on: {{$get_date|camp_date_format:"%e %M $Y"}}

5. </div>

We are trying to look for articles on a given date in sections that contain articles of type
Lot
article:

1. {{1list_articles columns="15" constraints="type is article issue greater
1 section smaller_equal 120 publish_date is "$get_date "}}
2. {{if $gimme->current_list->count > 15}}{{assign var="navigation" valu

e=true}}{{/if}}

3. {{if Sgimme->current_list->row==$page}}
4. {{if $gimme->current_list->column==1}}
5. <dl class="b-comm">
6. {({/1if}}
7. {{if Sgimme->section->name != S$section}}<dt>{{$gimme->section->name
}y</de>{{/if}}
8. <dd>{{Sgimme->article->name}}</dd>
9. {{assign var="section" value=$gimme->section->name}}
10. {{if $gimme->current_list->column==15}}

177

</dl>
{{/1if}}
{{/if}}
{{/list_articles}}
{{if $gimme—>prev_list_empty}}Nothing was found.{{/if}}

Otherwise, if there was a search action, we should output search results:

w N

© 0 1oy Ul

10.

{{elseif S$gimme->search_articles_action->defined}}

<div class="header-diag">Search results {{if $gimme->search_articles_acti
on->search_phrase}}for "{{$gimme->search_articles_action->search_phrase}}
"{{/if}}</div>

{{1list_search_results columns="10" order="bypublishdate desc"}}
{{1if $gimme->current_list->column==1}}
<dl class="b-comm">
{{/if}}
<dt>{{$Sgimme->article->name}}&
nbsp; (#{{$gimme->issue->name}} ({{$gimme->issue—>number}}) {{S$gimme->artic
le->publish_date|camp_date_format:"%d.%m.%Y"}})</dt>
<dd>{ {$gimme->article->intro|strip_tags:false|strip|truncate:300}
}</dd>
{{if Sgimme->current_list->column == 10}}
</dl>
{{/if}}
{{/if}}
{{/1list_search_results}}
{{if S$gimme->prev_list_empty}}Nothing was found.{{/if}}

Else, if there's no search action or date provided, just output the list of articles in the
current and previous issues:

1
2
3
4
5.
6
7
8

10.

{{else}}

<div class="header-diag">Latest materials</div>
<dl class="ui-accordion ui-widget">

<dt class="ui-accordion-header ui-state-default">Last Issue</dt>

<dd class="ui-accordion-content">

{{local}}{{set_current_issue}}{{assign var="issn" value=$gimme->issue
—>number}}{{/local}}

{{1list_articles constraints="type is article issue is $issn section s
maller_equal 120"}}

{{if $gimme->section->name != S$section}}{{if $gimme->current_list->
index>1}}
{{/if}}<p>{{S$gimme—>section—>name}}</p>{{
/if}}

<p>{{Sgimme->article->name}}</p>

{{assign var="section" value=$gimme->section->name}}

{{/list_articles}}
{{if Sgimme->prev_list_empty}}<p>Nothing was found.</p>{{/if}}
</dd>

{{list_issues length="1" constraints="number smaller $issn" order="by
PublishDate desc"}}

<dt class="ui-accordion-header ui-state-default">Previous Issue</dt>

<dd class="ui-accordion-content">

{{list_articles constraints="type is article section smaller_equal 12
0"}}

{{if $gimme->section->name != S$section}}{{if $gimme->current_list->
index>1}}
{{/if}}<p>{{S$gimme—>section—>name}}</p>{{
/if}}

<p>{{$gimme->article->name}}</p>

{{assign var="section" value=$gimme->section->name}}

{{/list_articles}}

{{if Sgimme->prev_list_empty}}<p>Nothing was found.</p>{{/if}}
</dd>

{{/1list_issues}}

In this example we are also listing the latest PDF issues and Polls:

1. <dt class="ui-accordion-header ui-state-default">Latest PDF versions<
/dt>

2. <dd class="ui-accordion-content">

3. {{list_articles constraints="type is pdf issue greater 1 section is
300 publish_date greater 1900-01-01"}}{{list_article_attachments length=
LERAS!

4. publication->site}}{{uri options="artic
leAttachment"}}">PDF #{{S$gimme->issue->name}} ({{Sgimme->issue->number}})
/ {{$gimme->issue->publish_date|camp_date_format:"%d.%m.%Y"}}

5. {{/list_article_attachments}}{{/list_articles}}

6. </dd>

7.

8. <dt class="ui-accordion-header ui-state-default">Latest Polls</dt>

9. <dd class="ui-accordion-content">

10. {{list_polls length="3" order="bynumber desc"}}

11. {{if Sgimme->current_list->index>1}}

{{/if}}<p>{{Sg
imme->poll->question}}</p>

12. {{list_poll_answers}}<p>

13. <div>{{$gimme->pollanswer—>answer}}

14. <div class="poll-result ui-state-highlight" style="width:{{$gim
me->pollanswer—->percentage|string_format:"%d"}}%; ">{{$gimme->pollanswer—>
percentage|string_format:"%$d"}}%$</div>

15. </div></p>

16. {{/list_poll_answers}}

17. {{/1list_polls}}

18. </dd>

19.

20. </dl>

21 {{/1f}}

AMOLHIA MATSPRIANGI

¥ ANOWHI BbINMYCK
» [ManAp3nHi BBINYCK

» AnowHia PDF eepcii BLILAHHA

~ ANOLWHIA ankLITaHHi

Ax BRI agHOociUeca 0a GypayHiurea ¥ Benapyei ASC (aramHan
IMEKTPACTaHURI

Uankan agabpato GyaayHiTea A3C, Bo raTa gacus Benapyci sHEpreTEMHYID
HESAMEHHACLE

He nag Tpeimanieao, Go raTa Hed acneqqa

A5 He naTtpatna, & Tpaba Bypasalp AppasnekTRECTaHUR | BETPaHBIA
INERTPECTEHUEI

M aHe He LiksEilp raTae NelTaHHE

And

that's pretty much it!

Definitely, you should think in advance about what type of archive you will need. After ten
years of work, you would still like to have everything in good order.

179

TEMPLATE REFERENCE

55. LANGUAGE ELEMENTS AND CONVENTIONS
56. BASIC SYNTAX

180

55 LANGUAGE ELEMENTS AND
CONVENTIONS

In the following chapters describing the template language the following conventions are
used:

e identifiers in between '<' and '">' must be replaced in the template according to their
description

® spaces must be used as in the language description

e identifiers that are not in between '<' and '>' are language keywords and must be
written as in the language description

o identifiers enclosed by '[' and ']' characters are not mandatory in the statement

e sequences of identifiers separated by '|' character describe a situation where all the
identifiers are valid but only one can be used at a time

The template language is composed of:

e statements: keywords with a special meaning that define actions taken by the
template parser

e parameters: keywords describing statement features; they are used to specify
statement constraints

e parameter values: keywords that describe the parameter that must be taken

Any value must be put in between double quotes (""). The double quote must be escaped
any time it is used in an identifier. For example, escaping a value that contains a quote:

{{ if $gimme->article->name == "Lucas \"the beast\"" }}

In some statements (usually lists) there is a special parameter named "constraints". This
parameter describes conditions that cannot be specified in the usual way:

’parameterz"value"

Instead, constraints are specified in the following way:

lconstraints:”<constraintsilist>“

Constraints are built from the following expressions:

® comparison expressions: <attribute> <operator> <value>
e attributes without type: <attribute>

Attributes may have no type, or one of the following types:

integer: signed, 10 digits number
string of characters: may contain any character except control characters - these will
be removed automatically

e switch: has two values: "on" and "off"

e date: year, month, day; where the date value is specified it must be written in "yyyy-
mm-dd" format

e time: hour, minute, second; where the time value is specified it must be written in
"hh:mm:ss" format

181

e datetime: year, month, day, hour, minute, second; where the datetime value is
specified it must be written in "yyyy-mm-dd hh:mm:ss" format
e topic: list of names defined by the Newscoop user for categorizing articles

Every type has a list of valid operators that can be used on attributes of that particular type.
The operators list corresponding to defined types is:

e integer: <integer_operator> = is | not | greater | greater_equal | smaller |
smaller_equal

e string of characters: <string_operator> = is | not | greater | greater_equal | smaller |

smaller_equal

switch: <switch_operator> = is | not

date: <date_operator> = is | not | greater | greater_equal | smaller | smaller_equal

time: <time_operator> = is | not | greater | greater_equal | smaller | smaller_equal

datetime: <datetime_operator> = is | not | greater | greater_equal | smaller |

smaller_equal

e topic: <topic_operator> = is | not

Spaces in values must be escaped with backslash, for example:

|constraints:"topic is Global\ Warming:en"

In this case, "Global Warming" is the topic name.

182

56 BASIC SYNTAX

The Newscoop template engine was built on Smarty, so the Newscoop template language is
actually an extension of the Smarty template language. For details of the Smarty template
language please read: http://smarty.net/manual/en/smarty for.designers.php

All template tags are enclosed within delimiters. By default in Smarty these are the single
curly brackets { and } but they can be changed. In Newscoop we use the double curly
brackets {{ and }} for template tag delimiters.

For the examples in this Cookbook, we will assume that you are using the default
Newscoop delimiters. All content outside of delimiters is displayed as static content, or
unchanged. When the template engine encounters template tags, it attempts to interpret
them, and displays the appropriate output in their place.

The following sub-chapters, which were copied from the Smarty manual, will familiarize you
with the Smarty syntax.

ATTRIBUTES

Most of the functions take attributes that specify or modify their behaviour. Attributes to
Smarty functions are much like HTML attributes. Static values don't have to be enclosed in
quotes, but it is recommended for literal strings. Variables may also be used, and should not
be in quotes.

Some attributes require boolean values (TRUE or FALSE). These can be specified as either
unquoted true, on, and yes; or false, off, and no.

{{include file='header.tpl'}}
{{include file='header.tpl' attrib_name='attrib value'}}
{{include file=$includeFile}}
{{include file=#includeFile# title='Smarty is cool'}}
{{html_select_date display_days=yes}}

{{mailto address='smarty@example.com'}}

<select name='company_id'>

{{html_options options=$companies selected=S$company_id}}
</select>

O W ®WJo U WN

[

COMMENTS

Template comments are surrounded by asterisks, and then surrounded by the delimiter
tags like this:

1. {{* this is a comment *}}

2. Comments are NOT displayed in the final output of the template, unlike <!
—— HTML comments —-->. These are useful for making internal notes in the t
emplates which no one will see.

3. {{* I am a template comment, I don't exist in the compiled output *}}
4. <html>

5. <head>

6. <title>{{$title}}</title>

7. </head>

8. <body>

9. {{* another single line comment *}}

10. <!-- HTML comment that is sent to the browser —-—>

183

http://smarty.net/manual/en/smarty.for.designers.php

11. {{* this multiline

12. comment is

13. not sent to browser

14. *}})

15. ((***
16. Multi line comment block with credits block

17. @ author: bgRexample.com

18. @ maintainer: support@example.com

19. @ para: var that sets block style

20. @ css: the style output

21_ **}}

22. {{* The header file with the main logo and stuff *}}

23. {{include file='header.tpl'}}

24. {{* Dev note: the $includeFile var is assigned in foo.php script *}}
25. <!-- Displays main content block -->

26. {{include file=$includeFile}}

27. {{* this <select> block is redundant *}}

28. {{*

29. <select name="company">

30. {{html_options options=$vals selected=$selected_id}}
31. </select>

32, *}})

33. <!-- Show header from affiliate is disabled -->

34. {{* Saffiliate|upper *}}
35. {{* you cannot nest comments *}}

36, {{*

37. <select name="company">

38. {{* <option value="0">-- none -- </option> *}}

39. {{html_options options=$vals selected=$selected_id}}

40. </select>

41. *}}

42. {{* cvs tag for a template, below the 36 SHOULD be an american currency
43. . however its converted in cvs.. *}}

44, {{* $Id: Exp $ *}}
45. {{* $Id: *}}

46. </body>

47. </html>

EMBEDDING VARS IN DOUBLE QUOTES

Smarty will recognize assigned variables embedded in "double quotes" so long as the variable
name contains only numbers, letters, under_scores and square brackets []. See the PHP
naming documentation at http:/php.net/language.variables for more detail.

With any other characters, for example a .period or $object>reference, then the variable
must be surrounded by “backticks’.

You cannot embed modifiers, they must always be applied outside of quotes.

1. {{func var="test $foo test"}} <-— sees $foo

2. {{func var="test S$foo_bar test"}} <-- sees $foo_bar

3. {{func var="test $foo[0] test"}} <-— sees $foo[0]

4. {{func var="test $foo[bar] test"}} <-- sees S$foo[bar]

5. {{func var="test S$foo.bar test"}} <-— sees S$foo (not $foo.bar)

6. {{func var="test '$foo.bar’ test"}} <-- sees S$foo.bar

7. {{func var="test "$foo.bar’ test"|escape}} <-- modifiers outside quotes!

Here are some practical examples:

{{* will replace $tpl_name with value *}}
{{include file="subdir/$tpl_name.tpl"}}

{{* doesn't replace $tpl_name *}}
{{include file='subdir/$tpl name.tpl'}}

d oUW N

{{* must have backticks as it contains a . *}}

184

http://php.net/language.variables

8. {{cycle values="one,two, $smarty.config.myval "}}

9.

10. {{* same as Smodule['contact'].'.tpl' in a php script *}}
11. {{include file="'S$module.contact .tpl"}}

12.

13. {{* same as $module[$view].'.tpl' in a php script *}}

14. {{include file="$module.$view.tpl"}}

ESCAPING SMARTY PARSING

It is sometimes desirable or even necessary to have Smarty ignore sections it would
otherwise parse. A classic example is embedding Javascript or CSS code in a template. The
problem arises as those languages use the { and } characters which are also the default
delimiters for Smarty.

The simplest thing is to avoid the situation altogether by separating your Javascript and CSS
code into their own files and then using standard HTML methods to access them.

Including literal content is possible using literal../literal blocks. Similar to HTML entity usage,
you can use Idelim, rdelim or $smarty.Idelim to display the current delimiters.

FUNCTIONS

Every Smarty tag either prints a variable or invokes some sort of function. These are
processed and displayed by enclosing the function and its attributes within delimiters like
so: funcname attr| ='vall ' attr2="val2'.

1. {{config_load file='colors.conf'}}

2. {{include file='header.tpl'}}

3. {{insert file='banner_ads.tpl' title='Smarty is cool'}}
4. {{if Slogged_in}}

5. Welcome, {{$name}}!

6. {{else}}

7. hi, {{S$name}}

8. {{/if}}

9.

{{include file='footer.tpl' ad=$random_id}}

e Both built-in functions and custom functions have the same syntax within templates.

e Built-in functions are the inner workings of Smarty, such as if, section and strip.
There should be no need to change or modify them.

e Custom functions are additional functions implemented via plugins. They can be
modified to your liking, or you can create new ones. html_options and popup are
examples of custom functions.

MATH

Math can be applied directly to variable values.

1 {{$foo+1}}

2

3. {{$foo*$bar}}

4

5. {{* some more complicated examples *}}

6

7 {{$foo—>bar-Sbar[1] *Sbaz—>foo->bar () -3*7}}
8.

9. {{if (S$foo+Sbar.test%Sbaz*134232+10+Sb+10) }}
10.

11. {{$fooltruncate:" $fooTruncCount/$barTruncFactor-1""}}
12.

185

| 13. {{assign var="foo" value="'S$foo+$Sbar "}}

VARIABLE MODIFIERS

Modifiers can be applied to variables, custom functions or strings. To apply a modifier,
specify the value followed by a | (pipe) and the modifier name. A modifier may accept
additional parameters that affect its behaviour. These parameters follow the modifier name
and are separated by a : (colon). Also, all PHP functions can be used as modifiers implicitly
(more below) and modifiers can be combined.

1. {{* apply modifier to a variable *}}

2. {{S$title|upper}}

3.

4. {{* modifier with parameters *}}

5. {{Stitle|truncate:40:'..."'}}

6.

7. {{* apply modifier to a function parameter *}}
8. {{html_table loop=S$myvar|upper}}

9.

10. {{* with parameters *}}

11. {{html_table loop=$myvar|truncate:40:'...'}}
12.

13. {{* apply modifier to literal string *}}
14. ({{'foobar' |upper}}

16. {{* using date_format to format the current date *}}
17. {{$smarty.now|date_format:"$Y/%m/%d"}}

19. {{* apply modifier to a custom function *}}
20. {{mailto|upper address='smartyQexample.com'}}

21

22. {{* using php's str_repeat *}}
23. {{'='"|str_repeat:80}}

24

25. {{* php's count *}}
26. {{SmyArray|Qcount}}

28. {{* php's shuffle on servers's ip *}}
29. {{$smarty.server.SERVER_ADDR|shuffle}}

30.

31. {{* this will uppercase and truncate the whole array *}}
32. <select name="name_id">

33. {{html_options output=SmyArray |upper|truncate:20}}

34. </select>

If you apply a modifier to an array variable instead of a single value variable, the modifier will
be applied to every value in that array. If you really want the modifier to work on an entire
array as a value, you must prepend the modifier name with an @ symbol.

For example:

{{SarticleTitle|@count}}

will print out the number of elements in the $articleTitle array using the php count()
function as a modifier.

Modifiers are autoloaded from the $plugins_dir or can be registered explicitly with the
register_modifier() function. The later is useful for sharing a function between PHP scripts
and Smarty templates.

All PHP functions can be used as modifiers implicitly, as demonstrated in the example
above. However, using PHP functions as modifiers has two little pitfalls:

186

First - sometimes the order of the function-parameters is not the desirable one. Formatting
$foo with {{"%2.f"|sprintf:$foo}} actually works, but asks for the more intuitive, like
{{$foo|string_format:"%2.f"}} that is provided by the Smarty distribution.

Secondly - if $security is enabled, all PHP functions that are to be used as modifiers have to
be declared trusted in the MODIFIER_FUNCS element of the $security_settings array

You can apply any number of modifiers to a variable. They will be applied in the order they
are combined, from left to right. They must be separated with a | (pipe) character:

{{SarticleTitle}}

{{SarticleTitle|upper|spacify}}
{{SarticleTitle|lower|spacify|truncate}}
{{SarticleTitle|lower|truncate:30|spacify}}
{{SarticleTitle|lower|spacify|truncate:30:". . ."}}

U W N

VARIABLES

Template variables start with the $dollar sign. They can contain numbers, letters and
underscores, much like a PHP variable. You can reference arrays by index numerically or
non-numerically. Also reference object properties and methods.

Config file variables are an exception to the $dollar syntax and are instead referenced with
surrounding #hashmarks#, or via the $smarty.config variable.

1 {{$foo}} <-- displaying a simple variable (non array/object)

2

3. {{S$foofl4]}} <-- display the 5th element of a zero-indexed array

4

5 {{$foo.bar}} <-- display the "bar" key value of an array, similar to P
HP S$foo['bar']

6.

7. {{S$foo.Sbar}} <-- display variable key value of an array, similar to PH
P $foo[S$bar]

8.

9. {{$foo->bar}} <-- display the object property "bar"

10.

11. {{S$foo->bar()}} <—- display the return value of object method "bar"

12.

13. {{#foo#}} <-- display the config file variable "foo"

14.

15. {{$smarty.config.foo}} <-- synonym for {{#foo#}}

16.

17. {{$foo[bar]}} <-— syntax only valid in a section loop, see {{section}}

18.

19. {{assign var=foo value='baa'}}{{S$foo}} <-- displays "baa", see {{assign}

}

Many other combinations are allowed:

1. {{$foo.bar.baz}}

2. {{S$foo.S$bar.Sbaz}}

3. {{$foo[4].baz}}

4. {{Sfoo[4].Sbaz}}

5. {{S$foo.bar.baz[4]}}

6.

7. {{$foo->bar ($baz, 2, $bar) }} <—— passing parameters
8.

9. {{"foo"}} <—— static values are allowed
10.
11. {{* display the server variable "SERVER NAME" ($_SERVER['SERVER NAME'])*}

}

12. {{$smarty.server.SERVER_NAME} }

187

TEMPLATE REFERENCE -
OBJECTS

57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.

188

INTRODUCTION TO NEWSCOOP OBJECTS

ARTICLE OBJECT AND ATTACHMENT, COMMENT, LOCATION
AUTHOR AND AUTHOR BIOGRAPHY

BROWSER

IMAGE

ISSUE

LANGUAGE

PUBLICATION

SECTION

SUBSCRIPTION

SUBTITLE (SUBHEADS IN LONG ARTICLES)

TEMPLATE

TOPIC

URL

USER

DEFAULT OBJECTS (LIST OF ALL AVAILABLE OBJECTS)

57 INTRODUCTION TO NEWSCOOP OBJECTS

The Newscoop template engine stores the template environment in an object named
'‘simme’. All Newscoop properties and objects are attributes of the $gimme object.

The $gimme object has the following attributes which are not objects:

e version: the Newscoop version

e preview: true if the page was displayed in the preview window (by a Newscoop staff
user)

e prev_list_empty: true if a list was displayed before querying this attribute and this list
was empty

Any Newscoop object (e.g.: $gimme->language, or $gimme->article) has the following
functions:

e has_property("property _name")

Returns true when the object has the given property. This function can be used for
dynamic article properties too. For example, $gimme->article->has_property("name") will
return true.

e same_as($gimme->other_object)

Returns true if the object variable given as a parameter points to the same data as the
current object. For example, {{ if $gimme->article->same_as($gimme->default_article) }} will
return true if the current article was the same as the article defined at the beginning of the
template. If both were undefined this function returns true.

189

58 ARTICLE OBJECT AND ATTACHMENT,
COMMENT, LOCATION

ARTICLE

The article object is set at the beginning of the main template based on the request URL.
This object can be changed using the set_article function. The article object has the
following properties:

Base properties/functions:

® name: article name
® number: article identifier in the Newscoop database

author: returns an object corresponding to the first author in the list of authors, with
the following properties:

o name
first_name
last_name
email
defined
authors: returns the complete list of authors for the current article - objects of type
author (see above or "Author").
keywords: text containing the article keywords separated by the Newscoop defined
separator (default is comma [,])
has_keyword (<keyword>): returns true if the given keyword existed in the article
keywords list

o
o
o
o

Example:

{{

if $gimme->article->has_keyword (mp3podcast) }}{{
/if }}

Important: the command matches parts of the keyword. In the above example keywords
"mp3podcast] 0" and "mp3podcasttalk” both return true.

190

type_name: article type name

type_translated: article type name translated to the environment language
<date_attribute>: article creation date field (year, month, day etc.)

creation_date: article creation date; you can customize the date display format by
using the filter camp_date format

publish_date: article publish date; you can customize the date display format by using
the filter camp_date format

last_update: time of the last article edit

o template: the full path of the article template file
e type-> <article_type>-> <article_type_attribute>: returns the content of an article

field specific to a certain article type (see the "Article Types" chapter in Newscoop for
Journdlists and Editors); read the chapter Date and e-mail formatting in this Cookbook
for formatting the content of type date/time; see also the notes below

url_name: the article name used in URL display (see the "Creating An Article" chapter
in Newscoop for Journalists and Editors)

translated to(<language code>): true if an article translation for the language with the
given code existed

subtitles_count(<field_name>): returns the number of the subtitles in the given
content field; the article name is counted as the first subtitle so this function returns
a number greater or equal to |. If the specified field was not a content field it returns
null.

subtitle url_id(<field_name>): returns the URL parameter which sets the number of
the subtitle to be displayed from the field <field_name>

current_subtitle no(<field_name>): returns the number of the subtitle which will be
displayed through the statement {{ $gimme->article-><field_name> }}; 0 for the
default subtitle, | for the first subtitle defined in the article content field etc.
publication: the publication to which this article belongs to - object of type
publication (see the chapter "Publication")

issue: the issue to which this article belongs to - object of type issue (see the chapter
"Issue")

section: the section to which this article belongs to - object of type section

language: the article language - object of type language (see the chapter "Language")
owner: the user who created the article - object of type user (see the chapter
"User")

defined: boolean value (true/false) - true if the article was set in the current
environment; false otherwise

Comments related properties/functions:

comments_enabled: true if comments were enabled for the article publication, article
type and the current article

comments_locked: true if comments were locked (meaning they can be listed but no
new comments can be posted)

comment_count: returns the number of the comments posted to the article and
approved

Accessibility properties/functions:

on_front_page: true if article front page flag was set

on_section_page: true if article section page flag was set

is_published: true if the article was published

is_public: true if the article was accessible to the public

is_indexed: true if the article was indexed by the search engine

content_accessible: returns true if the content of the article is accessible for reading:
either it is public or the reader subscribed to the publication (see also Editing An
Article and Creating a Publication chapters in Newscoop for Journdlists and Editors)

Attachment related properties/functions:

has_attachments: true if the article had attached files

image: returns the image object that was defined in the template environment; if the
image was not defined in the environment, returns the first image of the article; if the
article didn't have any image attached returns an unset image object

image_index: returns the index of the current image inside the article; if the image
wasn't defined in the environment or it doesn't belong to the article returns null.
has_image(<image index>): true if the article had an attached image and it's index
was equal to the given index

image(<image_index>): returns the attached image having the given index; if no such
image existed, returns an unset image object. This is a function so the image index is
given in between brackets. For example: $gimme->article->image(3)

191

image<image index>: returns the attached image having the given index; if no such
image existed, returns an unset image object. This is a property, not a function. For
example: $gimme->article->image3

topics_count: returns the number of topics attached to this article

has_topics: true if the article had attached topics

has_topic(<topic_identifier>): true if the article had the specified topic attached to it

Statistics properties/functions:

reads: returns the number of readers that viewed this article since it was published
request_object_id: the identifier used in statistics gathering

<date_attribute> may be one of the following:

year: year (four digits)

mon: month as a number (1..12)

mday: day of the month as a number (1..31)

yday: day of the year (1..366)

wday: day of the week as a number (0=Sunday..6=Saturday)
hour: hour (0..23)

min: minute (two digits)

sec: seconds (two digits)

mon_name: name of the month

wday_name: day of the week

Note regarding the attribute type->[<article_type>->]<article_type_attribute>:

Attributes which are body fields (content) have the following properties:

all_subtitles: returns the whole content of the body field, not just the current subtitle
first_paragraph: returns the first paragraph of the current subtitle

subtitles_count: returns the number of the subtitles in the body field
subtitle_number: returns the number of the current subtitle: 0 for the default
subtitle, | for the first subtitle defined in the article content field etc.
subtitle_is_current: true if the subtitle that would be displayed through the
statement {{ $gimme->article-><article_type attribute> }} is the same as the subtitle
defined in the template environment (see also the chapter "Subtitle (subheads in long
articles)" and current_subtitle no(<field name>) above)

has_previous_subtitles: true if the current subtitle from this field was not the first
subtitle

has_next_subtitles: true if the current subtitle from this field was not the last subtitle

Example: displaying the first paragraph of the dynamic field "content™:

$gimme->article->content->first_paragraph

Note regarding the attribute type->[<article_type>->]<article_type_attribute>:

In Newscoop the table cell containing the image link in article body fields has the class
¢s_img and the cell containing the caption text has the class caption; this allows the web
designer to change the layout of the article images by using a CSS file. The image link has the
following structure:

1.
2
3.
4
5

192

<table border="0" cellspacing="0" cellpadding="0" class="cs_img" align=le
ft>
<tr>
<td align="center">
<img src="/get_img?NrArticle=143&NrImage=1" border="0"
hspace="5" vspace="5">

6 </td>

7 </tr>

8. <tr><td align="center" class="caption">Newscoop team</td></tr>
9 </table>

Note regarding the attribute type->[<article_type>->]<article_type_attribute>:

The subtitle in the article body fields has the class articlesubhead; this allows the web
designer to change the layout of the subtitles by using a CSS file. The subtitle anchor has the
following structure:

1.
2. Version 2.3.0 - 2.3.1
3.

The structure of the anchor name is:

a<language identifier>.<article_number>_ s<subtitle number>

ARTICLE ATTACHMENT

The article attachment object is usually initialized inside a list of article attachments. It is not
initialized at the beginning of the template and can not be initialized by other Newscoop
functions. The article attachment object has the following properties:

identifier: the attachment identifier in the Newscoop database (integer value)
file_name: the name of the attached document

mime_type: the mime type of the attached document

extension: the file extension of the attached document

description: the user filled description field of the attached document in the current
language

size_b: the size of the attached document in bytes

size_kb: the size of the attached document in kilobytes

size_mb: the size of the attached document in megabytes

defined: boolean value (true/false) - true if the attachment was set in the current
environment; false otherwise

Examples

Taken from Template Pack "The Custodian" (date 201 1-03-15) file "if-audio.tp!"

{{ 1f ($Sgimme->attachment->extension == mp3) || (S$Sgimme->attachment->extension
== 0g99g) }}

Taken from Template Pack "The Custodian" (date 201 |-03-15) file "if-audio.tpl"

<div class="audio-attachment-description">{{ Sgimme—>attachment->description }}
</div>

Taken from Template Pack "The Custodian" (date 201 |-03-15) file "if-audio.tpl"

1. <audio controls>

2. <source src="http://{{ $gimme->publication->site }}{{ uri options="ar
ticleattachment" }}" type="{{ S$gimme->attachment->mime_type }}">

3. </audio>

193

ARTICLE COMMENT

The comment object is usually initialized inside a list of article comments. It can be initialized
at the beginning of the template from the URL request but can not be initialized by other
Newscoop functions. The article comment object has the following properties:

identifier: the numerical identifier of the article comment from the database
e real_name: the real name of the reader who posted the comment; the reader must
be a registered Newscoop user; for anonymous readers this attribute will return an
empty string
nickname: the nickname of the reader who posted the comment
reader_email: the email of the reader who posted the comment
anonymous_author: whether the reader is anonymous or not
submit_date: the date and time the comment was submitted
subject: the subject of the article comment
content: the content of the article comment
content_real: the raw representation of the content
level: the level of the current comment in the tree structure of the comments
article: the article where this comment was submitted to - object of type article
defined: true if the comment object had a valid value

Example

1. {{ list_article_comments columns="2" order="bydate desc"}}

2. {{ if $gimme->current_list->at_beginning }}

3. <h2>{{ S$gimme->article->comment_count }} Response(s) to “{{ $gimm
e->article—>name }}”</h2>

4. <ol class="commentlist">

5. {{ /if }}

6. <1li class="comment {{ if S$gimme->current_list->column == "1" }}odd{{ e
lse }}even{{ /if }}">

7. <div class="comment-head cl">

8. <div class="user-meta">

9. <strong class="name">{{ $gimme->comment->nickname }} {{ Sgimme->comment->submit_date|camp_date_format:"%e.%m.%Y at $H:%i" }}

10. </div>

11. </div>

12. <div class="comment-entry">

13. <p>{{ $gimme->comment->content }}</p>

14. </div>

15. </1li>

16. {{ if $gimme->current_list->at_end }}

17.

18. {{ /if }}

19. {{ /list_article_comments }}

ARTICLE LOCATION

Note: this works only in Newscoop 3.5.0 and newer versions.

Maps require jQuery: In order to use display maps you must include jQuery in the header
of your document, with a link like this:

<script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/l [iquery.min js">

The article "location" object is usually initialized inside a list of articles. It is not initialized at
the beginning of the template and can not be initialized by other Newscoop functions. The
article location object has the following properties:

194

® name: the location's name
e latitude: latitude in degrees
o longitude: longitude in degrees
o text: location's text description
e content: location's rich text description
e multimedia: list of multimedia items related to the location, see the "Location
Multimedia" object.
Examples
1. {{ list_article_locations }}
2. {{ if S$gimme->location->enabled }}
3. {{ $gimme->location->name }}{{ if $gimme->current_list->at_end }}
{{ else }}, {{ /if }}
4. { /1if }}
5. {{ /list_article_locations }}

LISTING ALL INFORMATION FOR LOCATIONS IN AN ARTICLE

@ J oUW N

<h2>List article with geolocation information</h2>

{{ list_articles}}
{{ list_article_locations }}
{{ 1f $gimme->location->enabled }}
{{ if Sgimme->current_list->at_beginning }}

<1i>LOCATION DATA FOR: {{ S$gimme->article->name }}</1i>

{{ /if }}
list index: {{ S$gimme->current_list->index }}</1li>
name: {{ $gimme->location->name }}</1i>
latitude: {{ S$gimme->location->latitude }}</1li>
longitude: {{ $gimme->location->longitude }}</1li>
text: {{ $gimme->location->text }}</1i>

content: {{ $gimme->location->content }}</1i>
multimedia:</1i>

{{ foreach from='$gimme->location->multimedia’ item=multi
mediaitem }}
src: {{ $multimediaitem->src }}</1li>
type: {{ $multimediaitem->type }}</1i>
spec: {{ S$multimediaitem->spec }}</1i>
width: {{ $multimediaitem->width }}</1i>
height: {{ Smultimediaitem->height }}</1i>
{{ /foreach }}

{{ if $gimme->current_list->at_end }}

{({ /if }}
{{ /7if }}
{{ /list_article_locations }}
{{ /list_articles }}

Ushahidi compatible KML format. You can use this as a feed to call as a layer in Ushahidi

o Ul s W N

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">

<Document>
<name>{{ $gimme->publication->name }}</name>
<description><! [CDATA[.]]></description>

{{ list_articles}}

195

24.
25.

26.
27.

{{ 1f $gimme->location->enabled }}
<Style id="style{{ $gimme->article->number }}-{{ $gimme->current_list->
index }}">
<IconStyle>
<Icon>
<href>http://www.sourcefabric.org/javascript/geocoding/markers/ma
rker—gold.png</href>
</Icon>
</IconStyle>
</Style>
{{ /if }}
{{ /list_article_locations }}
{{ /list_articles }}
{{ list_articles}}
{{ list_article_locations }}
{{ 1f $gimme->location->enabled }}
<Placemark>
<name>{{ $gimme->location->name }} @ {{ $gimme->article->name }}</nam
e>
<description></description>
<styleUrl>#style{{ $gimme->article->number }}-{{ $gimme->current_list
—>index }}</styleUrl>
<Point>
<coordinates>{{ $gimme->location->longitude }}, {{ $gimme->location-
>latitude }},0.000000</coordinates>
</Point>
</Placemark>
{{ /if }}
{{ /list_article_locations }}
{{ /list_articles }}
</Document>
</kml>

196

59 AUTHOR AND AUTHOR BIOGRAPHY

AUTHOR

Note: this works only in Newscoop 3.5.0 and newer versions.

The article author object is usually initialized inside a list of article authors. It is also always
possible to access this object for the current article in the environment (see "Article"). It is
not initialized at the beginning of the template and can not be initialized by other Newscoop
functions. The article author object has the following properties:

first_name: the author's first name

last_name: the author's last name

name: the author's full name

email: the author's e-mail address

type: the author type

biography: the author biography - see "Author Biography" object

picture: the author picture - see "Image" object

defined: boolean value (true/false) - true if the author was set in the current
environment; false otherwise

Examples
1. {{ list_article_authors order="bylastname" }}
2. <p class="author-head">
3. {{ Sgimme->author->type }}: {{ $gimme->author->name }}
4. </p>
5. <p class="author-bio">
6. author->picture->imageurl }}" class="author-pic">
7. {{ $gimme->author->biography->text }}
8. </p>
9. {{ /list_article_authors }}

{{ if Sgimme->article->defined }} by

{{ $gimme->article->author->first_name }}
{{ $gimme->article->author->last_name }}
{{ $gimme->article->author->type }}

{({ /if }}

g w N

AUTHOR BIOGRAPHY

Note: this works only in Newscoop 3.5.0 and newer versions.

The author biography object is usually initialized within the "Author" object. It is not a main
object as it can only be used through the "Author" object. Also, it is not initialized at the
beginning of the template and cannot be initialized by other Newscoop functions. The
author biography object has the following properties:

first_name: the translated author's first name

last_name: the translated author's last name

name: the translated author's full name

text: the translated author's biography

defined: boolean value (true/false) - true if the author biography was set in the
current environment; false otherwise

197

Example

1 {{ if S$gimme->article->defined }} by

2 {{ Sgimme->article->author->biography->name }}

3. ({{ $gimme->article->author->type }})

4 <p>{{ $gimme->article->author->biography->text }}</p>
5. {{ /if }}

198

60 BROWSER

(This chapter is based on the PHP browser detection script by Harald Hope, available under
GNU GPL v3 from:
http://techpatterns.com/downloads/scripts/browser_detection_php_ar.txt)

The browser object is set at the beginning of the main template based on the request URL.
The browser object can be called as follows:

{{ $gimme->browser }} or {{ S$gimme->browser->browser_name }}

The above statement returns the full browser name string, if available, otherwise it returns
". The statement:

{{ $gimme->browser->browser_number }}

returns the browser version number, if available, otherwise it returns ". The statement:

{{ $gimme->browser->browser_working }}

returns the working shorthand browser name: ie, op, moz, konq, saf, ns4, webkit, and some
others. If not shorthand, it will probably just return the full browser name, like lynx. The
statement:

{{ $gimme->browser->dom }}

returns trueffalse if it is a basic dom browser, ie >= 5, opera >= 5, all new moxzillas, safaris,
or konquerors. The statement:

{{ $Sgimme->browser—->ie_version }}
tests to see what general |E it is. Possible return values:

ie9x - all new msie 9 or greater - note that if in compat mode, 7,8,9 all show as 7
ie7x - all new msie 7 or greater

ie5x - msie 5 and 6, not mac

ieMac - msie 5.x mac release

ie4 - msie 4

old - pre msie 4

The statement:
{{ $gimme->browser->mobile_data }}

returns an array of data about mobiles. Note the browser/os number data is very unreliable
so don't count on that. No Blackberry version handling is done explicitly. Make sure to test
if this is an array, because if it's not mobile it will be null, not an array listed by array index
number:

199

http://techpatterns.com/downloads/scripts/browser_detection_php_ar.txt

0 - $mobile_device

I - $mobile_browser

2 - $mobile_browser_number
3 - $mobile_os

4 - $mobile_os_number

5 - $mobile_server

6 - $mobile_server _number

7 - $mobile_device_number

Note: $mobile_browser only returns if a specifically mobile browser is detected, like
minimo. Same for mobile os, with the exception of GNU/Linux. Otherwise the standard
script os/browser data is used. $mobile_server is a handheld service like docomo, novarro-
vision, etc. Sometimes the string will contain no other usable data than this to determine if
it's handheld or not.

1 {{ if Sgimme->browser->ua_type != "mobile" }}

2 {{ assign var="browserdetect_mobile_device" value="false" }}

3 {{ assign var="browserdetect_mobile_os" value="false" }}

4. {{ assign var="browserdetect_mobile_os_number" value="false" }}

5 {{ else }}

6 {{ assign var="mobile_data" value='$gimme->browser->mobile_data" }}
7 {{ php }}

8. Smobile_data = $this->get_template_vars('mobile_data');

9. Sthis—>assign ('browserdetect_mobile device', $mobile datal[0]);
10. Sthis->assign ('browserdetect_mobile_os', $mobile_datal[3]);
11. Sthis—>assign ('browserdetect_mobile_os_number', S$mobile_datal4]);
12. {{ /php }}
13. {{ /if }}

The statement:

{{ Sgimme->browser->moz_data }}
returns array of mozilla / gecko information. Return Array listed by index number:

0 - $moz_type [moz version - the specific brand name that is, eg: firefox)

| - $moz_number - the full version number of $moz_type (eg: for firefox: 3.6+2b)

2 - $moz_rv - the Mozilla rv version number, math comparison version. This tells you
what gecko engine is running in the browser (eg rv: 1.8)

3 - $moz_rv_full - rv number (for full rv, including alpha and beta versions: 1.8.1-b3)

4 - $moz release date - release date of the browser

1. {{ if $gimme->browser—->browser_working == "moz" }}

2. {{ assign var="browser_data" value='$gimme->browser->moz_data’ }}
3. {{ php }}

4. Sbrowser_data = $this->get_template_vars ('browser_data');

5. Sthis—>assign ('browserdetect_name', S$browser_datal[0]);

6. Sthis->assign ('browserdetect_engine', "gecko");

7. Sthis—>assign ('browserdetect_engineversion', S$browser_datal[2]);
8. Sthis—>assign ('browserdetect_version', S$browser_data[l]);

9. {{ /php }}
10, {{ /if }}

The statement:

{{ S$gimme->browser—>os }}

returns which os is being used - win, nt, mac, OR iphone, blackberry, palmos, palmsource,
symbian, beos, 0s2, amiga, webtv, linux, unix. The statement:

{{ Sgimme->browser->os_number }}

200

returns windows versions, 95, 98, ce, me, nt: 4; 5 [windows 2000]; 5.1 [windows xp]; 5.2
[Server 2003]; 6.0 [Windows Vista], 6.1 [Windows 7]. Only win, nt, mac, iphone return os
numbers (mac/iphone return 10 if OS X.) OR returns GNU/Linux distro/unix release name,
otherwise returns null.

{{ $gimme->browser->run_time }}

The time it takes this script to execute from start to point of returning value. Requires PHP
5 or greater. Returns time in seconds to 8 decimal places: 0.00245687. Run time does not
count the time used by PHP to include/parse the file initially. That total time is about 5-10x
longer. Because subsequent script run-throughs go very fast, you will see the seconds go
from something like 0.001 15204 for the first time, to something like 0.00004005 for
second and more runs. The statement:

{{ $gimme->browser->safe }}

returns true/false, you can determine what makes the browser be safe lower down,
currently it's set for ns4 and pre version | mozillas not being safe, plus all older browsers.
The statement:

{{ Sgimme->browser->true_ie_number }}
returns the true version of msie running, ignoring the compat mode version.

Note that php will turn 7.0 to 8 when adding |, so keep that in mind in your tests. 7.1 will
become 8.1 as expected, however. This test currently only tests for 7.x -> 8.x

FYI:in PHP, 7.0 == 7 is true but 7.0 === 7 is NOT true. If this is null but set, then it is
NOT running in compatibility mode. The statement:

{{ $gimme->browser->ua_type }}
returns one of the following:

bot (web bot)

bro (normal browser)
bbro (simple browser)
mobile (handheld)

dow (downloading agent)
lib (http library)

The statement:
{{ $gimme->browser->webkit_data }}
returns array of webkit data. The Return Array is listed by index number:

0 - $webkit_type [webkit version name (Eg. chrome)]
| - $webkit_type_number [webkit version number (Eg. Chrome's: 1.2)]
2 - $browser_number [the actual webkit version number (Eg. Webkit's: 436)]

1. {{ if S$gimme->browser->browser_working == "webkit" }}

2. {{ assign var="browser_data" value="$gimme->browser->webkit_data" }}

3. {{ assign var="browserdetect_engineversion" value='$gimme->browser->bro
wser_number” }}

4. {{ php }}

5. Sbrowser_data = S$this->get_template_ vars ('browser_data');

6. Sthis->assign ('browserdetect_name', S$browser_datal[0]);

7. Sthis—>assign ('browserdetect_engine', "webkit");

8. Sthis->assign ('browserdetect_version', S$browser_datal[l]);

9. {{ /php }}

201

| 0. (1 /if })

202

6 I . IMAGE

The image object is usually initialized inside a list of article images or a list of images. It is not
initialized at the beginning of the template and can not be initialized by another Newscoop
function. The image object has the following properties:

number: the image identifier in the images archive

photographer: the name of the photographer that took the picture

place: a short text containing the place where the picture was taken

description: short description of the picture

caption: displays the image caption field

<date_attribute>: image creation date field (year, month, day etc.)

date: image creation date; you can customize the date display format by using the
filter camp_date format (see the chapter "Date and e-mail formatting")

last _update: displays the time the image was updated

article_index: returns the index of the current image inside the article defined in the
environment; if the image wasn't defined in the environment, the article was not
defined or the image didn't belong to the article, returns null

imageurl: returns the URL of the current image

thumbnailurl: returns the URL of the current image's thumbnail

type: the subtype from the mimetype field; e.g: png, jpeg, gif etc.

is_local: | if the image was stored locally, O if external

defined: boolean value (true/false) - true if the image was set in the current
environment; false otherwise

<date_attribute> may be one of the following:

year: year as a number (four digits)

mon: month as a number (I..12)

mday: day of the month as a number (1..31)

yday: day of the year (1..366)

wday: day of the week as a number (0=Sunday..6=Saturday)
hour: hour (0..23)

min: minute (two digits)

sec: seconds (two digits)

mon_name: name of the month

wday name: day of the week

203

62 ISSUE

The issue object is set at the beginning of the main template, based on the request URL.
This object can be changed using the set_issue function. The issue object has the following
properties:

name: issue name

number: issue identifier in the Newscoop database (integer value)

<date_attribute>: issue publish date field (year, month, day etc.)

date: the issue publish date; you can customize the date display format by using the
filter camp_date format (see the chapter "Date and e-mail formatting")

publish_date: alias of date

template: the full path of the issue template file

publication: the publication to which this issue belongs (see the chapter "Publication")
language: the issue language (see the chapter "Language")

url_name: the issue name used in URL display (see the chapter "Creating An Issue" in
Newscoop for Journalists and Editors)

defined: boolean value (true/false) - true if the issue was set in the current
environment; false otherwise

e is_current: true if the issue set in the environment was the latest published issue
e is_published: true if the issue has been and is currently published; false otherwise

<date attribute> may be one of the following:

204

year: year as a number (four digits)

mon: month as a number (1..12)

mday: day of the month as a number (1..31)

yday: day of the year (1..366)

wday: day of the week as a number (0=Sunday..6=Saturday)
hour: hour (0.23)

min: minute (two digits)

sec: seconds (two digits)

mon_name: name of the month

wday name: day of the week

63 . LANGUAGE

The language object is set at the beginning of the main template, based on the request URL.
This object can be changed using the set_language function. The language object has the
following properties:

name: language name

number: language identifier in the Newscoop database (integer value)
english_name: language name in English

code: language international code

defined: boolean value (true/false) - true if the language was set in the current
environment; false otherwise

If you want to verify whether the current environment language is the same as the initial
language, compare it to the default_language object. For example:

1. {{ if $gimme->language == $gimme->default_language }}
2. ...
3. {{ /if }}

If you want to display parts of your templates in a different language according to the
language selected by the user, you can use something similar to the following code. This
snippet was used for a bilingual publication.

{{ if $gimme->language->code == "en" }}
archive
{{ else }}
[trans]archive

{{ /if 1}

205

64 PUBLICATION

The publication object is set at the beginning of the main template, based on the request
URL. This object can be changed using the set_publication function. The publication object
has the following properties:

name: publication name

identifier: publication identifier in the Newscoop database (integer value)
default_language: the publication default language - object of type Language

site: publication site

defined: boolean value (true/false) - true if the publication was set in the current
environment; false otherwise

public_comments: true if the public (anonymous readers) are allowed to post
comments

moderated _comments: true if the comments posted by the current reader will be
moderated

captcha_enabled: true if CAPTCHA will be used to detect spam
subscription_currency: returns the currency used for subscription payments
subscription_time_unit: returns the time unit (day, week, month, year) used to set
the subscription length

subscription_trial_time: returns the default time of the trial subscription in time units
subscription_paid_time: returns the default time of the paid subscription in time
units

subscription_time: returns the default time of the subscription in time units; the
subscription type should be defined through request parameters in the user form
(see the chapter "Subscription form")

subscription_unit_cost: returns the cost of the time unit for the paid subscription,
for a single translation of the publication

subscription_unit_cost_all_lang: returns the cost of the time unit for the paid
subscription for all translations of the publication

For more details on these attributes see also the chapter "Creating a Publication" in
Newscoop for Journalists and Editors.

206

65 SECTION

The section object is set at the beginning of the main template, based on the request URL.
This object can be changed using the set_section function. The section object has the
following properties:

name: section name

number: section identifier in the Newscoop database

description: section description text

url_name: the section name used in URL display (see the "Creating a section" chapter
in Newscoop for Journadlists and Editors)

template: the full path of the issue template file

publication: the publication to which this section belongs to - object of type
Publication

issue: the issue to which this section belongs to - object of type Issue
language: the section language - object of type Language

defined: boolean value (true/false) - true if the section was set in the current
environment; false otherwise

207

66 SUBSCRIPTION

The user subscription object is set at the beginning of the main template based on the
session cookies, or if the Login action took place. It can not be initialized by other
Newscoop functions. The subscription object has the following properties:

identifier: the subscription identifier in the Newscoop database

currency: the currency identifier

type: one of the following values: "trial", "paid"

start_date: returns the start date of the subscription

expiration_date: the expiration date in the format "yyyy-mm-dd hh:mm:ss"
is_active: true if the subscription was active

is_valid: true if the subscription was active and did not expire

publication: returns the publication to which the subscription was made
has_section(<section_number>): returns true if the subscription included the given
section

o defined: true if the subscription object had a valid value

208

0. SUBTITLE (SUBHEADS IN LONG
ARTICLES)

The subtitle object is usually initialized inside a list of subtitles. It can be initialized at the
beginning of the template from the URL request but can not be initialized by other
Newscoop functions. The subtitle object has the following properties:

number: the order number of the subtitle (starts from 0)

name: subtitle name without the HTML formatting

field_name: the article field name to which the subtitle belongs
formatted _name: the subtitle name with HTML formatting
content: the subtitle content

count: the number of subtitles in the field content
has_previous_subtitles: true if previous subtitles exist
has_next_subtitles: true if subtitles exist after the current subtitle

209

68 TEMPLATE

The template object is set at the beginning of the main template based on the request URL.
This object cannot be changed using Newscoop functions. The template object has the
following properties:

name: the template file name

identifier: the template identifier in the Newscoop database

type: returns one of the following values: issue, section, article, default, nontpl
defined: true if the template object had a valid value

210

69 TOPIC

The topic object is usually initialized inside a list of article topics or a list of subtopics. It can
be initialized at the beginning of the template from the URL request, or by using the
set_topic function in Newscoop. The topic object has the following properties:

name: returns the topic name in the current language defined in the template
environment

value: returns the topic value in the following format: <topic_name_lang_code> =
<topic_name>:<language code>

identifier: the topic identifier in the Newscoop database

defined: true if the topic object had a valid value

211

70 URL

The URL object follows the changes in the template environment, meaning that every time
an object in the environment changes the URL object is updated. It has the following
properties:

is_valid: returns true if the URL was valid, false otherwise. On invalid URLs
Newscoop returns a "404 not found" HTTP response. This option only works in
Newscoop 3.4.0 and newer versions. Here is example code which could be used in a
404 page:

1. {{ if !$gimme->url->is_valid }}

2. <h3>The requested page was not found.</h3>

3. {{ set_language name="$gimme->publication->default_language->english_name
S

4. {{ set_current_issue }}

5. {{ else }}

6. <!-- display content —->

7. {{ /if }}

e uri: returns the complete link URI, and is equivalent to:

{{ Sgimme->url->uri_path }}?{{ $gimme->url->url_parameters }}

e uri_path: returns only the path part of the URI, the part before the parameters list.
For example, if /en/1/2/32param | =text was the full URI, uri_path is /en/1/2/3
o url: returns the complete URL in the form:
http://<default_site_alias><uri>
e url_parameters: returns a string containing the runtime environment parameters in
URL format
e form_parameters: the runtime environment parameters in HTML form format:

|<input type="hidden" name="<param name>" value="<param_value>">

base: returns the URL base in the form:

|http[s]://<server7name>[:<port>]

The port is not displayed if it's value was the default value (80 for HTTP, 443 for HTTPS)

212

path: equivalent to uri_path

query: equivalent to url_parameters

type: returns the identifier of the URL type set in the publication (see also "Creating
A Publication" in Newscoop for Journadlists and Editors)

request_uri: equivalent to uri

scheme: one of the following values: http, https

host: the host name from the URL

port: the port to which the request was made

language: returns the language object corresponding to the language set in the URL;
this value is always the same as the language in the environment (see the chapter
"Language" for more details)

publication: returns an object corresponding to the publication identified by the
<server_name>; this value is always the same as the publication in the environment
(see the chapter "Publication" for more details)

issue: returns an object corresponding to the issue specified in the URL (unset if the
issue was not specified); this value is always the same as the issue in the environment
(see the chapter "Issue" for more details)

section: returns an object corresponding to the section specified in the URL (unset if
the section was not specified); this value is always the same as the section in the
environment (see the chapter "Section" for more details)

article: returns an object corresponding to the article specified in the URL (unset if
the article was not specified); this value is always the same as the article in the
environment (see the chapter "Article object and attachment, comment, location" for
more details)

The URL object has the following functions:

get_parameter(<parameter_name>): returns the value of the given parameter, null if
not set

set_parameter(<parameter_name>, <parameter_value>): set the given parameter to
the given value

reset_parameter(<parameter_name>): unset the given parameter

213

T1. user

The user object is set at the beginning of the main template based on the session cookies, or
if the Login action or Edit user action took place. It can not be initialized by other
Newscoop functions. The user object has the following properties:

identifier: the user identifier in the Newscoop database

name: the user's full name

uname: the user's login name

gender: "M" or "F"

email

city

str_address: street address

state

phone

fax

country: the country name

country_code: the country code

contact

second_phone

postal code

employer

position

interests

how

languages

improvements

field|

field2

field3

field4

field5

textl

text2

text3

prefl

pref2

pref3

pref4

title

age

defined: true if the user object had a valid value

logged in: true if the user was defined and authenticated

blocked_from_comments: true if the user was blocked from posting comments

subscription: returns the first subscription assigned to this user; unset if the user is a

staff member

e is_admin: true if the user is a staff member, and can therefore log in to the
Newscoop administration interface

e has_permission(<permission_name>): true if the user is a staff member and has been

given a specific permission in the Newscoop administration interface

214

72 DEFAULT OBJECTS (LIST OF ALL
AVAILABLE OBJECTS)

The default objects contain the information of a specific object at the beginning of the main
template.

DEFAULT ARTICLE

The default_article object is set at the beginning of the main template based on the request
URL and cannot be modified. It has the same attributes as the Article object.

DEFAULT ISSUE

The default_issue object is set at the beginning of the main template based on the request
URL and cannot be modified. It has the same attributes as the Issue object.

DEFAULT LANGUAGE

The default_language object is set at the beginning of the main template based on the
request URL and cannot be modified. It has the same attributes as the Language object.

DEFAULT PUBLICATION

The default_publication object is set at the beginning of the main template based on the
request URL and cannot be modified. It has the same attributes as the Publication object.

DEFAULT SECTION

The default_section object is set at the beginning of the main template based on the request
URL and cannot be modified. It has the same attributes as the Section object.

DEFAULT TEMPLATE

The default_template object is set at the beginning of the main template based on the
request URL and cannot be modified. It has the same attributes as the Template object.

DEFAULT TOPIC

The default_topic object is set at the beginning of the main template based on the request
URL and cannot be modified. It has the same attributes as the Topic object.

DEFAULT URL

The default_url object is set at the beginning of the main template based on the request
URL and cannot be modified. It has the same attributes as the URL object.

215

TEMPLATE REFERENCE -
CONTROLLING OBJECTS

73. SET OBJECTS
74. UNSET OBJECTS
75. LOCAL - TEMPORARY VARIABLE ENVIRONMENT

216

13. ser OBJECTS

SET ARTICLE

Purpose:

Sets the runtime environment article to the one selected by the statement constraint. If the
statement constraint was not valid, the section is not changed.

Syntax:

’{{ set_article name="<article_name>" }}

Select the article having the specified name. If the supplied name was not valid, this
parameter is not modified.

l{{ set_article number="<article_number>" }}

Select the article having the specified number. If the supplied number was not valid, this
parameter is not modified.

Constraints:

Cannot be used inside "list_articles", "list_article attachments”, "list_article comments",

"list_article_topics", "list_article_audio_attachments", "list_search_results" and
"list_subtitles" statements.

See also "Set Default Article", and "Unset Article".

SET CURRENT ISSUE

Purpose:

Sets the runtime environment issue to the last published issue.

Syntax:

’ {{ set_current_issue }}

Constraints:

Cannot be used inside any list statement.

See also "Set Issue", "Set Default Issue", and "Unset Issue".

SET DEFAULT ARTICLE

Purpose:

Sets the runtime environment article to the "default_article".

217

Syntax:

| {{ set_default_article }}

Constraints:

Cannot be used inside "list_articles", "list_article attachments", "list_article_comments",

"list_article_topics", "list_article_audio_attachments", "list_search_results" and
"list_subtitles" statements.

See also "Set Article", and "Unset Article".

SET DEFAULT ISSUE

Purpose:

Sets the runtime environment issue to the "default_issue".

Syntax:

| {{ set_default_issue }}

Constraints:
Cannot be used inside any list statement.

See also "Set Issue", "Set Current Issue", and "Unset Issue".

SET DEFAULT LANGUAGE

Purpose:

Sets the runtime environment language to the "default language".

Syntax:

| {{ set_default_language }}

Constraints:
Cannot be used inside any list statement.

See also "Set Language", and "Unset Language".

SET DEFAULT PUBLICATION

Purpose:

Sets the runtime environment publication to the "default_publication".

Syntax:

| {{ set_default_publication }}

218

Constraints:

Cannot be used inside any list statement.

See also "Set Publication", and "Unset Publication".

SET DEFAULT SECTION

Purpose:

Sets the runtime environment section to the "default_section".

Syntax:

’{ { set_default_section }}

Constraints:

Cannot be used inside "list_sections", "list_articles", "list_article attachments",

"list_article_comments", "list_article topics", "list_article audio attachments",
"list_search_results" and "list_subtitles" statements.

See also "Set Section", and "Unset Section".

SET DEFAULT TOPIC

Purpose:

Sets the runtime environment topic to the "default_topic".

Syntax:

l {{ set_default_topic }}

Constraints:
Cannot be used inside "list_articles" and "list_article topics" statements.

See also "Set Topic", and "Unset Topic".

SET ISSUE

Purpose:

Sets the runtime environment issue to the one selected by the statement constraint. If the
statement constraint was not valid, the issue is not changed.

Syntax:

l{{ set_issue number="<issue_number>" }}

Select the issue having the specified number. If the number supplied was not valid, this
parameter is not changed.

219

Constraints:

Cannot be used inside any list statement.

See also "Set Default Issue", "Set Current Issue", and "Unset Issue".

SET LANGUAGE

Purpose:
Sets the runtime environment language to the one selected by its English name. From this

statement on, the language set is the newly chosen one. If the language name supplied was
not valid, this variable is not modified.

Syntax:

|((set_language name="<language_name>" }}

Filters:
<language_name> is the English name of the selected language.
Constraints:

Can not be used inside any list statement.

See also "Set Default Language", and "Unset Language".

SET PUBLICATION

Purpose:

Sets the runtime environment publication to the one selected by the statement constraint.
If the statement constraint was not valid, the publication is not changed.

Syntax:

|((set_publication name="<publication_name>" }}

Select the publication having the specified name. If the name supplied was not valid, this
parameter is not modified.

|{{ set_publication identifier="<publication_identifier>" }}

Select the publication having the specified identifier. The publication identifier is a unique
number associated to the publication and is supplied by the Newscoop administration
interface.

Constraints:

Cannot be used inside any list statement.

See also "Set Default Publication", and "Unset Publication".

220

SET SECTION

Purpose:

Sets the runtime environment section to the one selected by the statement constraint. If
the statement constraint was not valid, the section is not changed.

Syntax:

’{{ set_section name="<section_name>" }}

Select the section having the specified name; this has to be written in the language of the
context. If the name supplied was not valid, this parameter is not modified.

l{{ set_section number="<section_number>" }}

Select the section having the specified number; this is not dependent on context language. If
the number supplied was not valid, this parameter is not modified.

Constraints:

Cannot be used inside "list_sections”, "list_articles", "list_article attachments",
won "o

"list_article_comments", "list_article topics", "list_article audio_attachments",
"list_search_results" and "list_subtitles" statements.

See also "Set Default Section", and "Unset Section".

SET TOPIC

Purpose:

Sets the runtime environment topic to the one selected by the statement constraint. If the
statement constraint was not valid, the topic is not changed. Setting the environment topic
will change the behaviour of an article list: only articles having that topic will be listed. For
example:

{{ set_topic name="test:en" }}

1
2. {{ list_articles }}
3.
4

{{ /list_articles }}

The example above will list only articles having the topic 'test'. The topic is automatically
appended to the URL parameters, so you don't have to set the topic in the current page:

1. {{ set_topic name"test:en" }}
2. text

Syntax:

IH set_topic name="<topic_name_lang_code>" }}

{{ set_topic identifier="<integer_value>" }}

Select the topic having the specified name:language pair or identifier. If the supplied value
was not valid, this variable is not modified. The name:language pair must be written in the
following format:

221

<topic_name_lang_code> = <topic_name>:<language_code>

Examples:

sport:en, music:en where 'sport’ or 'music' is the topic name and 'en’ is the English language
code.

Constraints:
Cannot be used inside "list_articles" and "list_article topics" statements.

See also "Set Default Topic", and "Unset Topic".

222

14. unser OBJECTS

UNSET ARTICLE

Purpose:

Unset the runtime environment article. After this statement the article object will not be
defined any more.

Syntax:

’ {{ unset_article }}

Constraints:

Cannot be used inside "list_articles", "list_article attachments", "list_article_comments",

"list_article_topics", "list_article_audio_attachments", "list_search_results" and
"list_subtitles" statements.

See also "Set Default Article", and "Set Article".

UNSET COMMENT

Purpose:

Unset the runtime environment comment. After this statement the comment object will
not be defined any more.

Syntax:

‘ {{ unset_comment }}

Constraints:

Cannot be used inside "list_article_comments" statements.

UNSET ISSUE

Purpose:

Unset the runtime environment issue. After this statement the issue object will not be
defined any more.

Syntax:

{{ unset_issue }}

Constraints:

Cannot be used inside any list statements.

223

See also "Set Issue", "Set Current Issue", and "Set Default Issue".

UNSET LANGUAGE

Purpose:

Unset the runtime environment language. After this statement the language object will not
be defined any more.

Syntax:

{{ unset_language }}

Constraints:

Cannot be used inside "list_articles”, "list_article attachments”, "list_article_comments",

"list_article_topics", "list_article_audio_attachments", "list_search_results" and
"list_subtitles" statements.

See also "Set Language", and "Set Default Language".

UNSET PUBLICATION

Purpose:

Unset the runtime environment publication. After this statement the publication object will
not be defined any more.

Syntax:

| {{ unset_publication }}

Constraints:
Cannot be used inside any list statement.

See also "Set Publication", and "Set Default Publication".

UNSET SECTION

Purpose:

Unset the runtime environment section. After this statement the section object will not be
defined any more.

Syntax:

| {{ unset_section }}

224

Constraints:

Cannot be used inside "list_sections”, "list_articles", "list_article attachments",

"list_article_comments", "list_article topics", "list_article audio attachments",
"list_search_results" and "list_subtitles" statements.

See also "Set Section", and "Set Default Section".

UNSET TOPIC

Purpose:

Unset the runtime environment topic. After this statement the topic object will not be
defined any more.

Syntax:

l {{ unset_topic }}

Constraints:
Cannot be used inside "list_articles" and "list_article topics" statements.

See also "Set Default Topic", and "Set Topic".

225

75 LOCAL - TEMPORARY VARIABLE
ENVIRONMENT

LOCAL

Purpose:

Creates a temporary environment; when leaving the local block the previous template
environment (before entering local) is restored.

Syntax:

1. {{ local }}
2. <list_of_instructions>
3. {{ /local }}

The list of instructions may contain any instruction allowed in the current context. If it is
used inside a list it must respect the constraints of the list.

Constraints:
None.

Note: {{ local }} creates a new object. If you use {{ local }} excessively you might run into
performance issues because it is resource-hungry.

226

TEMPLATE REFERENCE -

LISTS

76.
71.
78.
79.
80.
8l.
82.

LIST ARTICLES AND ARTICLE RELATED CONTENT
LIST ARTICLE TOPICS AND SUBTOPICS

LIST OF ISSUES AND SECTIONS

LIST SUBTITLES (PAGINATION OF LONG ARTICLES)
LIST IMAGES

LIST LANGUAGES

LIST SEARCH RESULTS

227

76 LIST ARTICLES AND ARTICLE RELATED
CONTENT

LIST OF ARTICLES

Purpose:

Select the list of articles according to the given constraints and current environmental
variables. The publication, language, issue, section and article variables may not be defined
outside the list_articles statement; inside the statement however, all these variables are
defined. The code between "{{ list_articles }}" statement "{{ /list_articles }}" is repeated for
every article in the list.

Syntax:

{{ list_articles [length="<integer_value>"
[columns="<integer_value>"]
[constraints="<list_of_article_constraints>"
[ignore_publication="true"]
[ignore_issue="true"]
[ignore_section="true"]
[ignore_language="true"]
[location="<longitude, latitude>]
[order="<order_condition>"] }}

<list_of_instructions>

{{ /list_articles }}

H O Wow-Jo U b WwN P

=

Filters:

® length="<integer_value>": <integer_value> specifies list_length and forces the list to
have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object

e columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current list

1. {{ list_articles length="10" columns="2" order="byPublishDate desc"}}
2. {{ if S$Sgimme->current_list->column == "1" }}

3. left column

4. {{ /if }}

5.

{{ /list_articles }}

e ignore_publication: list articles from all publications, not only from the environment
publication

e ignore_issue: list articles from all issues, not only from the environment issue; if the
section was defined it will list only articles from the environment section
ignore_section: list articles from all sections, not only from the environment section
ignore_language: list articles in all languages; if the issue and section were defined in
the environment it lists only articles belonging to the environment issue/section

® |ocation: longitude and latitude values for the location

228

<list_of instructions> may contain any statement except those listed at the end of the page.

o <lJist of article constraints>=
o <article_constraint> <list_of article constraints>
o <article_constraint>
<article_constraint>=
name <string_operator> <string value>
number <integer operator> <integer value>
keyword <string_value>
OnFrontPage <switch_operator> <switch_value>
OnSection [<switch_operator> <switch_value>]
upload_date <date operator> <date value>
publish_date <date operator> <date value>
public <switch_operator> <switch_value>
type <switch_operator> <article_type>
<article_type> <article_type attribute> <attribute type operator>
<attribute _type value>
matchAllTopics
matchAnyTopic
topic is|not <string_value>
reads <integer operator> <integer value>
author <string_operator> <string value>
issue <integer operator> <integer value>
section <integer operator> <integer_ value>

Examples:

Taken from Template Pack "The Custodian" (date 201 1-03-16) file "article.tpl"

{{ list_articles name="topic_articles"
constraints="number not " $gimme->article->number’
“Stopic_cond’ matchAnyTopic" ignore_issue=true length=3 }}
{{ include file="classic/tpl/teaserframe_articlelistright.tpl"
+}
{{ include file="classic/tpl/pagination.tpl" }}
{{ assign var="number_cond" value=""S$number_cond’
number not ~$gimme->article->number” " }}
{{ /list_articles }}

© WU WN e

Examples of constraints:

constraints="issue greater |0 issue smaller 20"

constraints="section greater_equal 40 section smaller 60"

e name, number, upload_date, publish_date are self-explanatory article attributes

e keyword: all articles containing the specified keyword (and respecting all the other
constraints) will be in the list

® OnFrontPage: articles having "Show article on front page" flag in <switch_operator>
relation with <switch_value> will be selected; for details see Creating articles within a
section

e OnSection: articles having "Show article on section page" flag in <switch_operator>
relation with <switch_value> will be selected; for details see Creating articles within a
section

® public: articles having "Allow users without subscription..." flag in <switch_operator>
relation with <switch_value> will be selected

229

e . <article type attribute> ..: articles being of <article type> and having
<article_type_attribute> in <attribute_type operator> relation with
<attribute_type_value> will be selected; for details see "Article Types"

e matchAllTopics/matchAnyTopic: defines the behaviour of the list when matching
articles topics against the list of topics given as parameters:

o matchAllTopics will force the selection of articles that have all the given topics
o matchAnyTopic (default) will select articles that have at least one topic from
the given topic list

e topic: if "is" operator is used, articles having specified topic in their list of topics will
be selected; if "not" operator is uses articles not having specified topic in their list of
topics will be selected

® reads: you can set constraints based on the number of readers that viewed this
article since it was published

e author: you can list articles that have or don't have a certain author; e.g.: "author is
John\ Doe" (the backslash is needed to escape the space character - see Language
Elements; Conventions at the bottom of the page). The author attribute has a
predefined value " current”; when using this value the author will be filled in from
the currently defined article. For example: "author is __current”

Note on author attribute: this works only in Newscoop 3.2.1 and newer versions.

Note on topics: the topic name must be written in the following format:
<topic_name>:<language code>

Examples of valid topic names:
sports:en
health:en

Note on topics: If a certain topic was defined in the template environment by use of the
"set_topic" statement or URL parameter the list will change the behaviour of the articles list.
Only articles having that topic will be listed. For example:

1 {{ set_topic name="test:en" }}
2 {{ list_articles }}

3. I’

4 {{ /list_articles }}

This will list only articles having the topic 'test’. The topic is automatically appended to the
URL parameters so you don't have to set the topic in the current page.

e <order_condition>=

o byNumber desc|asc
byName desc|asc
byDate desc|asc
byCreationDate desc|asc
byPublishDate desc|asc
byLastUpdate desc|asc
byPopularity desc|asc
byPublication desc|asc
bylssue desc|asc
bySection desc|asc
byLanguage desc|asc
bySectionOrder desc|asc
byComments desc|asc
byLastComment desc|asc

0O 0O 0O OO0 OO O O O O O©

230

e byComments instructs the Newscoop to list articles by the number of comments
filed to each article

byLastComment will list articles ordered by the last article comment time

byDate is an alias of byCreationDate

The other order conditions are self-explanatory

The default order of articles in the list (if no order condition was set) is: first they are
ordered by the issue number descending, then by the section number ascending and
by the article order in the section ascending

Note: byComments and bylLastComment only work in Newscoop 3.2.2 and newer.
bylLastUpdate is implemented in Newscoop 3.5 and newer.

Inside the list the data context is defined by the constraints applied to the current article
for every processed line. The data context is restored after the list processing.

Constraints:
Inside list_articles the following statements are forbidden:

list_languages
set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue
set_default_issue
set_current_issue
unset_issue
list_sections
set_section
set_default_section
unset_section
list_articles
set_article
set_default_article
unset_article

list_articles statement cannot be used inside list_subtitles, or list_search_results statements.

LIST OF ARTICLE ATTACHMENTS

Purpose:

Create a list of documents attached to the article currently defined in the template
environment. If the article was not set the list is empty. The code between "{{
list_article_attachments }}" statement and "{{ /list_article_attachments }} is repeated for
every attachment in the list.

231

Syntax:

1. {{ list_article_attachments [length="<integer_value>"]

2. [columns="<integer_value>"]

3. [language="current"] }}

4., <list_of_instructions>

5. {{ /list_article_attachments }}

Filters:

e all languages: if true (default) the list will contain all article attachments independent
of their language; if false, the list will contain only article attachments that have the
language currently defined by the template environment

o length="<integer value>": <integer value> specifies list_length and forces the list to
have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object

e columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current_list

e language="current": list only attachments that were set as available for all translations

and available for the language currently set in the template environment

Inside list_articles the following statements are forbidden:

set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue
set_default_issue
set_current_issue
unset_issue
list_sections
set_section
set_default_section
unset_section
list_articles

set_article
set_default_article
unset_article
list_article_attachments

Inside the list, the current article attachment is set to the current element of the list. The
environment context is restored after the list processing.

232

Example:

@ J oUW N

{{ list_article_attachments }}

{{ 1f S$gimme->current_list->at_beginning }}
<h4>Downloads:</h4>

{({ /if }}
attachment->identifier }}">

{{ Sgimme->attachment->file_name }}

({{ $gimme->attachment->size_kb }}kb)

{{ /list_article_attachments }}

Here is an example of how to use the attachment list to play a number of MP3 files:

Bw N

10.
11.

{{ list_article_attachments }}
{{ if Sgimme->attachment->extension == "mp3" }}
<object type="application/x-shockwave-flash"
data="/templates/radioactive/apps/player_mp3_maxi.swf" width="200" height
="20">
<param name="movie" value="/templates/radioactive/apps/player_mp3_maxi.sw
£ />
<param name="bgcolor" value="#444444"/>
<param name="FlashVars" value="mp3={{ uri options="articleattachment" }}"
/>
<!-- player home: http://flash-mp3-player.net/ ——>
</object>
{{ /if }}
{{ /list_article_attachments }}

LIST OF ARTICLE AUTHORS

Note: this works only in Newscoop 3.5.0 and newer versions.

Purpose:

Create the list of authors to the article currently defined in the template environment. If the
article was not defined, the list is empty. The code between the "{{ list_article_authors }}"
statement and "{{ /list_article_authors }} is repeated for every author in the list. Inside the
list every author is represented by an author object, (see "Author").

Syntax:
1. {{ list_article_authors [length="<integer_ value>"
2. [columns="<integer_value>"
3. [order="<author_order>"] }}
4. <list_of_instructions>
5. {{ /list_article_authors }}

233

Filters:

® length="<integer_value>": <integer_value> specifies list_length and forces the list to
have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object
e columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current_list.
e order="<author_order>"=
o byFirstName: order by the author's first name
o bylastName: order by the author's last name
Example:

Taken from Template Pack "The Journal" (date 201 1-03-15) file "article-author-popup.tpl"

[

)

O W oW Joy U W

{{ list_article_authors }}

<div id="hidden{{ $gimme->current_list->index }}Content" class="teammem
berinfo" style="display:none">

<img style="width: 150px; float: left; margin: 0 10px 10px O"

src="{{ $gimme->author->picture->imageurl }}" />

<h2>{{ $gimme->author->name }}</h2>
<div class="text">
{{ Sgimme->author->biography->text }}
</div>

</div>
{{ /list_article_authors }}

Inside list_articles the following statements are forbidden:

set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue
set_default_issue
set_current_issue
unset_issue
list_sections
set_section
set_default_section
unset_section
list_articles
set_article
set_default_article
unset_article
list_article_images

Inside the list, the current author is set to the current element of the list. The environment
context is restored after the list processing.

234

LIST OF ARTICLE COMMENTS

Purpose:

Create a list of comments attached to the article currently defined in the template
environment. If the article was not defined the comments list is empty. The code between
the "{ list_article_comments }}" statement and "{{ /list_article_commnets }}" is repeated for
every comment in the list.

Syntax:
1. {{ list_article_comments [ignore_language="true|false"]
2. [ignore_article="true|false"]
3. [length="<integer_value>"]
4. [columns="<integer_value>"]
5. [order="<order_condition>"] }}
6. <list_of_instructions>
7. {{ /list_article_comments }}

Filters:

® ignore language: list comments regardless of the comment language
ignore_article: list comments for all articles, not only for the current article
length="<integer value>": <integer value> specifies list_length and forces the list to
have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object.

® columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current_list.

Note on ignore_article: this option will force the list order to date ordering. ignore language
and ignore_article only work in Newscoop 3.2.2 and newer.

e <order_condition>=
o byDate desc|asc
o default desc|asc

The default order of the comments in the list (if no order condition was specified) is based
on the tree structure of the comments as in the following example:

e root comment |
o reply | (parentis root comment |)
s reply | _| (parentis reply I)
® root comment 2
[]

The first element in the list is the first comment that was submitted, second is it's first reply
(if it exists), first reply of the first reply .. and so on down the tree structure, until it finds no
other reply, second reply to the root element etc.

If the order by date condition was specified the comments are displayed strictly by their
submission date, regardless of the relation they had to the other comments.

235

Example:

1. {{ list_article_comments order="byDate desc" }}
2. Subject: {{ $gimme->comment->subject }}

3. Posted {{ $gimme->comment->submit_date }}

4., by {{ $gimme->comment->reader_email }}
5.

6. {{ $gimme->comment->content }}

7.

8.

{{ /list_article_comments }}

The following example is taken from the Template Pack "The Custodian" (201 1-03-16) file
"comments.tlp"

1. {{ list_article_comments }}

2. {{ if $gimme->current_list->at_beginning }}

3.

4. <h4>

5. {{ if $gimme->language->name == "English" }}Previous comments
6. {{ else }}Los comentarios anteriores

7. {{ /if }}

8. </h4>

9.

10. {{ /if }}

11. <div class="comment" {{ if S$gimme->current_list->at_end }}
12. id="everlast"{{ /if }}>

13. <p>{{ $gimme->comment->nickname }}

14. {{ $gimme—>comment->content }}</p>

15. <p>

16.

17. {{ S$gimme->comment->subject }} |

18. {{ S$gimme->comment->submit_date|camp_date_format:"%M
19. %e, %Y" }}
20.
21. </p>
22. </div>
23. <!-- /.comment -->
24. {{ /list_article_comments }}

Inside list_articles the following statements are forbidden:

set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue
set_default_issue
set_current_issue
unset_issue
list_sections
set_section
set_default_section
unset_section
list_articles

set_article
set_default_article
unset_article
list_article_comments

236

LIST OF ARTICLE IMAGES

Purpose:

Create a list of images attached to the article currently defined in the template environment.
If the article was not defined, the list is empty. The code between the "{{ list_article_images
}}" statement and "{{ /list_article_images }} is repeated for every image in the list.

Syntax:
1. {{ list_article_images [length="<integer_ value>"]
2. [columns="<integer_value>"]
3. [order="<image_order>"] }}
4. <list_of_instructions>
5. {{ /list_article_images }}
Filters:
e length="<integer value>": <integer_value> specifies list_length and forces the list to

have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object
columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current_list.

order="<image order>"=

default, number: order by the number assigned to the image when attached to an
article

byDescription: order by the image description

byPhotographer: order by the photographer name

byDate: order by the image date

byLastUpdate: order by the image last update time

Example:

Taken from Template Pack "The Custodian" (date 201 1-03-15) file "article-gallery.tpl"

W J oUW N

{{ list_article_images }}

{{ if Sgimme->current_list->count gt 1 }}
{{ 1f S$gimme->current_list->at_beginning }}
<div id="article-gallery">

<h4>{{ if $gimme->language->name == "English" }}Article gallery
{{ else }}Mini galera{{ /if }}:
</h4>
{{ /if }}

<div class="gallery-item">

<a class="grouped_elements"
href="{{ $gimme->article->image->imageurl }}" rel="group">
article->image->description }}"
src="{{ S$gimme->article->image—>thumbnailurl }}" />

</div><!-- /.gallery-item -—>
{{ if S$gimme->current_list->at_end }}
</div><!-- /#article-gallery -->
{{ /1f 3}
{{ /if }}

{{ /list_article_images }}

237

Inside list_articles the following statements are forbidden:

set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue
set_default_issue
set_current_issue
unset_issue
list_sections
set_section
set_default_section
unset_section
list_articles
set_article
set_default_article
unset_article
list_article_images

Inside the list, the current image is set to the current element of the list. The environment
context is restored after the list processing.

LIST OF ARTICLE LOCATIONS

Note: this works only in Newscoop 3.5.0 and newer versions.

Maps require jQuery: In order to use display maps you must include jQuery in the header
of your document, with a link like this:

<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/
1/jquery.min.js">

Purpose:

Create a list of map locations related to the article currently defined in the template
environment. If the article was not defined, the list is empty. The code between the "{{
list_article_locations }}" statement and "{{ /list_article_locations }} is repeated for every
location in the list. Inside the list every location is represented by a map location object, (see
"Article Location").

Syntax:
1 {{ list_article_locations [length="<integer_value>"]
2. [columns="<integer_value>"] }}
3. <list_of_instructions>
4 {{ /list_article_images }}

238

Filters:

® length="<integer value>": <integer_value> specifies list_length and forces the list to

have at most list_length items. If the list contains more items than list_length items
the intervals of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object
columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current_list.

Example:

Ushahidi compatible KML format. You can use this as a feed to call as a layer in Ushahidi:

© WU WN e

<?xml version="1.0" encoding="UTF-8"?2>
<kml xmlns="http://earth.google.com/kml/2.2">

<Document>
<name>{{ S$gimme->publication->name }}</name>
<description><! [CDATA[.]]></description>

{{ list_articles}}
{{ list_article_locations }}
{{ if S$gimme->location->enabled }}
<Style id="style{{ $gimme->article->number }}-{{ $gimme->current_ list->
index }}">
<IconStyle>
<Icon>
<href>http://www.sourcefabric.org/javascript/geocoding/markers/mar
ker-gold.png</href>
</Icon>
</IconStyle>
</Style>
{({ /if }}
{{ /list_article_locations }}
{{ /list_articles }}

{{ list_articles}}
{{ list_article_locations }}
{{ if S$gimme->location->enabled }}
<Placemark>
<name>{{ $gimme->location->name }} @ {{
Sgimme->article—>name }}</name>
<description></description>
<styleUrl>#style{{ $gimme->article->number }}-{{
Sgimme->current_list->index }}</styleUrl>
<Point>
<coordinates>{{ $gimme->location->longitude
}}, {{ $gimme->location->latitude }},0.000000</coordinates>
</Point>
</Placemark>
{{ /if }}
{{ /list_article_locations }}
{{ /list_articles }}
</Document>
</kml>

Taken from Template Pack "The Journal" (date 201 1-03-15) file "article-cont.tpl"

o Ul W N

<p>
Location(s) :
{{ list_article_locations }}
{{ if Sgimme->location->enabled }}
{{ $gimme->location->name }}
{{ if Sgimme->current_list->at_end }}{{ else }}, {{ /if }}

239

7. { /if }}
8. {{ /list_article_locations }}
9. </p>

Inside list_article_locations the following statements are forbidden:

set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue
set_default_issue
set_current_issue
unset_issue
list_sections
set_section
set_default_section
unset_section
list_articles
set_article
set_default_article
unset_article
list_article_images

Inside the list, the current location is set to the current element of the list. The
environment context is restored after the list processing.

240

77 LIST ARTICLE TOPICS AND SUBTOPICS

LIST OF ARTICLE TOPICS

Purpose:

Create a list of topics attached to the article currently defined in the template environment.
If the article was not set, the list is empty. The topic parameter may not be defined outside
the list_article_topics statement; inside the statement however, this parameter is defined.
The code between "{{ list_article_topics }}" statement and "{{ /list_article_topics }}" is
repeated for every topic in the list.

Syntax:
1. {{ list_article_topics [length="<integer_value>"]
2. [columns="<integer_value>"] }}
3. <list_of_instructions>
4. {{ /list_article_topics }}

Filters:

o length="<integer value>": <integer value> specifies list_length and forces the list to
have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object.

o columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current_list.

Examples:

Taken from Template Pack "The Custodian" (date 201 1-03-16) file "article.tpl"

1. {{ list_article_topics }}

2. {{ assign var="topic_cond" value=""S$topic_cond topic is " S$gimme->topi
c->identifier” " }}

3. {{ /list_article_topics }}

Taken from Template Pack "The Custodian" (date 201 |-03-16) file "topic-list.tpl"

1 {{ list_article_topics }}

2 {{ 1f S$gimme->current_list->at_beginning }}

3 {{ if $gimme->language->name == "English" }}Related topics
4 {{ else }}Temas relacionados

5. {{ /if }}

6 {{ /if }}

7 {{$gimme->topic—>name }}

8 {{ if Sgimme->current_list->at_end }}

9 {({ /if }}

0 {{ /list_article_topics }}

[

Inside list_articles the following statements are forbidden:

24|

set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue
set_default_issue
set_current_issue
unset_issue
list_sections
set_section
set_default_section
unset_section
list_articles
set_article
set_default_article
unset_article
list_article_topics

Inside the list, the current topic is set to the current element of the list. The environment
context is restored after the list processing.

LIST OF SUBTOPICS

Purpose:

Create a list of subtopics of the topic currently set in the template environment. If the topic
was not set it will generate the list of root topics. The topic parameter may not be defined
outside the list statement; inside the statement however, this parameter is defined. The
code between "{{ list_subtopics }}" statement and "{{ /list_subtopics }}" is repeated for
every topic in the list.

Syntax:
1. {{ list_subtopics [length="<integer_value>"]
2. [columns="<integer_value>"]
3. [order="<order_condition>"] }}
4, <list_of_instructions>
5. {{ /list_subtopics }}

Filters:

o length="<integer value>": <integer value> specifies list length and forces the list to
have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object.

® columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current _list.

<list_of instructions> may contain any statement except those listed at the end of the page.

242

e <order_condition>=
o byNumber desc|asc
o byName desc|asc

Inside the list, the data context is defined by the constraints applied to the current topic for
every processed line. The data context is restored after the list processing.

Constraints:
Inside list_subtopics the following statements are forbidden:

list_subtopics
set_topic
set_default_topic
unset_topic

243

8. LIST OF ISSUES AND SECTIONS

LIST OF ISSUES

Purpose:

Select the list of issues according to the given constraints and current environmental
variables. The publication, language and issue variables may not be defined outside the
list_issues statement; inside the statement however, all these variables are defined. The code
between "{{ list_issues }}" statement and "{{ /list_issues }}" is repeated for every issue in the
list.

Syntax:
1. {{ list_issues [length="<integer_value>"]
2. [columns="<integer_value>"]
3. [constraints="<list_of_issue_constraints>"]
4. [order="<order_condition>"] }}
5. <list_of_instructions>
6. {{ /list_issues }}

Filters:

® length="<integer_value>": <integer_value> specifies list_length and forces the list to
have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object.

e columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current _list.

<list_of instructions> may contain any statement except: "set _language", "set_publication",

"list_issues", "set_issue".
e <list_of issue constraints>=
o <issue_constraint> <list_of issue_ constraints>
o <issue_constraint>
e <issue_constraint>=
o number<integer operator> <integer value>
name <string_operator> <string value>
publish_date <date operator> <date value>
publish_year <integer operator> <integer value>
publish_month <integer operator> <integer_ value>
publish_mday <integer operator> <integer value>
o <date constraint>
e <date constraint>=
o year <integer_operator> <integer value>
o mon_nr <integer operator> <integer value>
o mday <integer operator> <integer value>
o yday <integer operator> <integer value>

0O 0O 0O 0 o

244

wday <integer operator> <integer value>
hour <integer operator> <integer value>
min <integer operator> <integer value>
sec <integer operator> <integer value>

0O 0O O ©o

where year stands for year, mon_nr for month number (1..12), mday for month day (1..31),
yday for year day (1..365), wday for week day (1..7), hour for hour, min for minute and sec
for second.

Any parameter used in <list_of issue_constraints> can only be used once.

e <order_condition>=
o byNumber desc|asc
o byName desc|asc
o byDate desc|asc
o byCreationDate desc|asc
o byPublishDate desc|asc
Order conditions are self-explanatory; byDate and byCreationDate are aliases of
byPublishDate.

Inside the List the following environment variables are modified:

® language: if not defined before list start
® publication: if not defined before list start
® issue

The environment is restored after the list ends.
Examples:

Taken from Template Pack "The Custodian" (date 201 1-03-16) file "archive.tpl"

1. {{ list_issues length="10" order="byNumber desc" }}
2. <h2>
3.
4. {{ Sgimme->issue->name }}
5. </h2>
6. {{ 1f $gimme->language->name == "English" }}Issue
7. {{ else }}Edicin{{ /if }}
8. #{{ Sgimme->issue->number }} /
9. ({{ 1f $Sgimme->language->name == "English" }}published
10. {{ else }}publicado{{ /if }}
11. {{ S$gimme->issue->publish_date|camp_date_format:'$M %D, %Y %$h:%i:%s' }})
12. {{ include file="skins/greenpiece/includes/pagination.tpl" }}
13. {{ /list_issues }}
Constraints:

Inside list_issues the following statements are forbidden:

set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue

245

e set default issue
® unset_issue

list_issues statement can not be used inside any other list statements.

LIST OF SECTIONS

Purpose:

Select the list of sections according to the given constraints and current environmental
variables. The publication, language, issue and section variables may not be defined outside
the list_sections statement; inside the statement however, all these variables are defined.
The code between "{{ list_sections }}" statement and "{{ /list_sections }}" is repeated for
every section in the list.

Syntax:
1. {{ list_sections [length="<integer_value>"
2. [columns="<integer_value>"]
3. [constraints="<list_of_section_constraints>"] }}
4. <list_of_instructions>
5. {{ /list_sections }}

Filters:

length="<integer value>": <integer value> specifies list_length and forces the list to have at
most list_length items. If the list contains more items than list_length items the interval of
elements to be displayed can be switched using has_previous_elements and
has_next_elements from the current_list object.

columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell. The
counting starts from one and the variable is incremented for every new element. When it
reaches the maximum value it is reset to one. This is very useful in building tables of data.
For details see current_list.

<list_of instructions> may contain any statement except: "set_language", "set_publication",

"list_issues", "set_issue", "list_section", "set_section".
o <list_of section_ constraints>=
o <section_constraint> <list_of section_constraints>
o <section_constraint>
® <section_constraint>=
o name <string_operator> <string value>
o number <integer operator> <integer value>

Any parameter used in <list_of section_constraints> can only be used once.

Inside list_sections, the data context is defined by the constraints applied to the current
section for every processed line. The data context is restored after the list processing.

Example:

Taken from the Template Pack "The Custodian" (date 201 1-03-16) file "archive.tpl"

1. {{ list_sections order="bynumber asc" }}

246

3. section->number }}">
4. {{ Sgimme->section->name }}
5. <!——{{ $gimme->section->number }}-—>
6. </h3>
7.
8. {{ list_articles }}
9. <li id="list-article">
10. <h4>
11. section->number }}"
>
12. {{ Sgimme->article->name }}
13. </h4>
14. <div class="list-article-published">
15. {{ if Sgimme->language->name == "English" }}posted
16. {{ else }}publicado el
17. {({ /7if }}
18. {{ Sgimme->article->publish_date|camp_date_format:'%M %D, %Y %h:%i:%s'
}}
19. </div>
20. {{ include file="classic/tpl/topic-list.tpl" }}
21. </1li>
22. {{ /list_articles }}
23.
24. {{ /list_sections }}
Constraints:

Inside list_sections the following statements are forbidden:

set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue
set_default_issue
unset_issue
list_section
set_section
set_default_section
unset_section

The list_sections statement cannot be used inside list_articles, list_subtitles, or
list_search_results statements.

247

19. ust susTiTLES (PAGINATION OF LONG
ARTICLES)

LIST OF SUBTITLES

Purpose:

Create a list of subtitles for the content of the article currently defined in the template
environment. The article, if not specified somewhere else, is treated as group of paragraphs.
The markup for a new paragraph is the subtitle. The code between the "{{ list_subtitles }}"
statement and "{{ /list_subtitles }}" is repeated for every subtitle in the list.

Syntax:
1. {{ list_subtitles [length="<integer_value>"]
2. [columns="<integer_value>"] }}
3. <list_of_instructions>
4. {{ /list_subtitles }}

Filters:

o length="<integer value>": <integer value> specifies list length and forces the list to
have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object

® columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current_list

<list_of instructions> may contain any statement except: "set_language", "set_publication",

"list_issues", "set_issue", "list_sections", "set_section", "list_articles", or "set_article".
Inside the list, the data context is defined by the constraints applied to the current article
for every processed line. The data context is restored after the list processing.

Constraints:
Inside list_articles the following statements are forbidden:

set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue
set_default_issue
set_current_issue

248

unset_issue
list_sections
set_section
set_default_section
unset_section
list_articles
set_article
set_default_article
unset_article

249

80 LIST IMAGES

LIST OF IMAGES

Purpose:

Create a list of images. The list is built from the Media Archive independently, whether the
images are related to articles or not. The code between the "{{ list_images }}" statement and
"{{ Nlist_images }}" is repeated for every image in the list. Inside the list every image is
represented by an image object, (see "Image").

Syntax:
1. {{ list_images [length="<integer_value>"]
2. [columns="<integer_value>"]
3. [<filter>="<filter value>"]}}
4., <list_of_instructions>
5. {{ /list_images }}

250

Filters:

Inside

length="<integer_value>": <integer_value> specifies list_length and forces the list to
have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object.
columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current_list.

order="<order_field> <direction>" where <direction> may be "asc" (ascending) or
"desc" (descending) and the <order_field> can be one of:

default: order by image identifier

o byDescription: order by the description field

o byPhotographer: order by the photographer field

o byDate: order by image date field

byLastUpdate: order by the time the image was updated
description="<value>": select images whose description matches exactly the given
value

photographer="<value>": select images whose photographer matches exactly the
given value

place="<value>": select images whose place matches exactly the given value
caption="<value>": select images whose caption matches exactly the given value
date="<value>": select images whose date matches exactly the given value
type="<value>": select images whose type matches exactly the given value; valid type
values are: png, jpeg, gif etc.

description_like="<value>": select images whose description matches partially the
given value

photographer_like="<value>": select images whose photographer matches partially
the given value

place_like="<value>": select images whose place matches partially the given value
caption_like="<value>": select images whose caption matches partially the given value
start_date="<value>": select images whose date matches or is greater than the given
value

end_date="<value>": select images whose date matches or is smaller than the given
value

search="<value>": select images whose description, photographer, place and caption
matches partially the given value

local="true" | "false": select only local images if true, remote images if false

o

o

list_images the following statements are forbidden:

set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue
set_default_issue
set_current_issue
unset_issue
list_sections

251

set_section
set_default_section
unset_section
list_articles

set_article
set_default_article
unset_article
list_article_attachments

Inside the list, the current image is set to the current element of the list. The environment
context is restored after the list processing.

Example:
1. {{ list_images photographer="John\ Doe" order="byLastUpdate" }}
2. image->thumbnailurl }}" />

3. <p>{{ $gimme->image->description }}</p>
4. {{ /list_images }}

252

8 I . LIST LANGUAGES

LIST OF LANGUAGES

Note: this works only in Newscoop 3.2.1 and newer versions.

Purpose:

Select the list of languages according to the given constraints and current environmental
variables. The language variable may not be defined outside the list_languages statement;
inside the statement however, this variable is defined. The code between the
{{list_languages}} statement and {{/list_languages}} is repeated for every language in the list.

Syntax:
1. {{ list_languages [length="<integer_value>"]
2. [columns="<integer_value>"]
3. [of_publication="true|false"]
4. [of_issue="true|false"]
5. [of_article="true|false"]
6. [exclude_current="true|false"]
7. [order="<order_ condition>"] }}
8. <list_of_instructions>
9. {{ /list_languages }}
Filters:
® length="<integer value>": <integer value> specifies the list_length and forces the list

to have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object.
columns="<integer value>":<integer value> specifies the list columns_number and
sets an environment variable. This is incremented as if the items were placed in a
table cell. The counting starts from one and the variable is incremented for every
new element. When it reaches the maximum value it is reset to one. This is very
useful in building tables of data. For details see current _list.

of publication: if true, will list languages in which publication issues were translated
of issue: if true, will list languages in which the current issue was translated

of article: if true, will list languages in which the current article was translated
exclude_current: if true, will not include the current language in the list

When none of the three attributes (of publication, of issue, of section) was specified it will
list all available languages in Newscoop.

<list_of instructions> may contain any statement except those listed at the end of the page.

<order_condition>=
byNumber desc|asc

o byName desc|asc

o byEnglish_Name desc|asc
o byCode desc|asc

o

Order conditions are self-explanatory.

253

Inside the list, the following environment variable is modified:
e language: if not defined before list start

The environment is restored after the list ends.

Constraints:
Inside list_issues the following statements are forbidden:

set_language
set_default_language
unset_language
list_languages

254

82 LIST SEARCH RESULTS

LIST OF SEARCH RESULTS

Purpose:

Create a list of articles that match the search keywords entered by the reader. The
publication, language, issue, section, and article variables may not be defined outside the
list_search_results statement; inside the statement however, all these variables are defined.
The code between the "{{ list_search_result }}" statement and "{{ /list_search_result }" is
repeated for every article in the list.

Syntax:
1. {{ list_search_results [length="<integer_value>"]
2. [columns="<integer_value>"]
3. [order="<order_condition>"] }}
4. <list_of_instructions>
5. {{ /list_search_result }}

Filters:

e length="<integer value>": <integer value> specifies list_length and forces the list to
have at most list_length items. If the list contains more items than list_length items
the interval of elements to be displayed can be switched using
has_previous_elements and has_next_elements from the current_list object.

e columns="<integer value>": <integer value> specifies columns_number and sets an
environment variable. This is incremented as if the items were placed in a table cell.
The counting starts from one and the variable is incremented for every new element.
When it reaches the maximum value it is reset to one. This is very useful in building
tables of data. For details see current_list.

<list_of instructions> may contain any statement except: "set_language", or
"set_publication".

e <order_condition>=
byDate desc|asc
byCreationDate
byPublishDate
byNumber desc|asc
byName desc|asc

o

o
o
o
o

Order conditions are self-explanatory; byDate is an alias of byCreationDate. The default
order of articles in the list (if no order condition was set) is: first they are ordered by the
publication identifier ascending, then by the issue number descending, then by the section
number ascending, and by the article order in the section ascending.

Inside the list, the data context is defined by the constraints applied to the current article
for every processed line. The data context is restored after the list processing.

Constraints:

Inside list_articles the following statements are forbidden:

255

256

set_language
set_default_language
unset_language
set_publication
set_default_publication
unset_publication
list_issues

set_issue
set_default_issue
set_current_issue
unset_issue
list_sections
set_section
set_default_section
unset_section
list_articles
set_article
set_default_article
unset_article

TEMPLATE REFERENCE -
FORMS

83. SEARCH FORM

84. LOGIN AND REGISTRATION FORM

85. SUBSCRIPTION FORM

86. COMMENT FORM

87. ACTION CHECK ON FORM SUBMISSION

88. GENERAL FORM ELEMENTS AND FUNCTIONS

257

83 . SEARCH FORM

FORM SEARCH

Purpose:

Generate the search form and data fields for searching keywords in published articles. By
default the search action is performed in the current publication only.

Syntax:
1. {{ search_form [template="<template_name>"] submit_button="<button_name>"
2. [html_code="<html_code>"]
3. [button_html_code="<html_code>"] }}
4. <list_of_instructions>
5. {{ /search_form }}

e <template_name> is the name of the next template to be requested from the search
form
<button_name> is the name of the button for submitting the form
html_code: you can insert whatever HTML code you want in the <form> statement;
for example: {{ user_form .. html_code="id=\"my_id\"" }}

e button_html_code: you can insert whatever HTML code you want in the button
input field statement; such as: {{ user_form ..
button_html_code="id=\"my_submit_id\"" }}

The list of instructions may contain any instruction allowed in the current context.

Setting the search scope: whether to search in all publications, in the current publication, in
the current issue or in the current section. Insert the following field in the search form:

{{ camp_select object="search" attribute="level" }}

Constraints:

Can not be used within itself (e.g. search in search).

EDIT SEARCH

Purpose:

Generates a text input field so that a reader can search for articles on your site. This
statement should be used inside the search form.

Syntax:

{{ camp_edit object="search" attribute="<attribute>"
[html_code="<HTML_code>"]
[size ="<field_length>"] }}

Filters:

<attribute> being one of the following:

258

e keywords: allows search keywords input
e start_date: select only articles published starting on the selected date
e end_date: select only articles published up to the selected date

Constraints:

The search edit field can be used only inside the search form.

SELECT SEARCH

Purpose:

Generates a check box or a pop-up list for selecting the search mode or the search level
respectively. This statement should be used inside the search form.

Syntax:

{{ camp_select object="search" attribute="<attribute>"
[html_code="<HTML_code>"] }}

Filters:
<attribute> being one of the following:

e mode: if checked, the search will return articles that contain all entered keywords; if
not checked, it will return articles that contain at least one keyword

e |evel: allows the reader to select the scope of the search: multiple publications,
publication, issue, section

® section: select only articles that are in the given section

e issue: select only articles that are in the given issue

Constraints:

The select search field can only be used inside the search form.

259

84 LOGIN AND REGISTRATION FORM

FORM - LOGIN

Purpose:

Generate the form and data fields for logging in a user.

Syntax:

U W N

{{ login_form [template="<template_ name>"] submit_button="<button_name>"
[html_code="<html_code>"]
[button_html_code="<html_code>"] }}
<list_of_instructions>
{{ /login_form }}

<template_name> is the name of the next template to be requested from the login
form

<button_name> is the name of the button for submitting the form

html_code: you can insert whatever HTML code you want in the <form> statement;
for example: {{ user_form .. htm|_code="id=\"my_id\"" }

button_html_code: you can insert whatever HTML code you want in the button
input field statement; such as: {{ user_form ..
button_html_code="id=\"my_submit_id\"" }}

Constraints:

Cannot be used inside subscription and user forms. Cannot be used within itself (e.g. login
in login).

A simple implementation of a login form for the public website of your publication:

g oUW N

{{ 1f ! Sgimme->user->logged_in }}
<p>Login</p>
{{ if $gimme->login_action->is_error }}
<p>There was an error logging in:
{{ $gimme->login_action->error_message }}</p>
{{ /if }}
{{ login_form submit_button="Login" button_html_ code="class=\"submitbutt
on\"" }}
<p>User ID: {{ camp_edit object="login" attribute="uname" }}</p>
<p>Password: {{camp_edit object="login" attribute="password" }}</p>
{{ /login_form }}
{{ else }}
<p>Welcome {{ S$gimme->user->name }}</p>
<p>Logout</p>
{{ /1if }}

The logout requires this code in the head of every page:

1
2
3
4.
5
6

{{ 1f $gimme->url->get_parameter ('logout') == 'true' }}
<META HTTP-EQUIV="Set-Cookie" CONTENT="LoginUserId=; path=/">
<META HTTP-EQUIV="Set-Cookie" CONTENT="LoginUserKey=; path=/">

{{ Sgimme->url->reset_parameter ('logout') }}
<META HTTP-EQUIV="Refresh" content="0;url={{ uri }}">
{({ /if }}

260

EDIT LOGIN

Purpose:
Generates a text input field for entering a subscriber's login user name or password. Use

this to allow a subscriber to login to your site. These statements should be used inside the
login form.

Syntax:

{{ camp_edit object="login" attribute="<attribute>"
[html_code="<HTML_code>"
[size ="<field length>"] }}

Filters:
<attribute> being one of the following:

e uname: allows login name input
e password: allows password input

Constraints:

The login edit fields can only be used inside the login form.

SELECT LOGIN

Purpose:
Generates a check box; if checked the user session will be remembered for a period of two

weeks so the user will not have to login again. This statement should be used inside the login
form.

Syntax:

{{ camp_select object="login" attribute="rememberuser"
[html_code="<HTML_code>"] }}

Constraints:

The select login field can only be used inside the login form.

LOGOUT

There is no template keyword to logout a subscriber. Instead, just put these two lines in
your logout.tpl file:

<META HTTP-EQUIV="Set-Cookie" CONTENT="LoginUserId=; path=/">
<META HTTP-EQUIV="Set-Cookie" CONTENT="LoginUserKey=; path=/">

FORM - USER

Purpose:

261

Generate the form and data fields for adding a new user, or editing an existing user's data.

Syntax:
1. {{ user_form [template="<template_name>"] submit_button="<button_name>"
2. [html_code="<html_code>"]
3. [button_html_code="<html_code>"] }}
4. <list_of_instructions>
5. {{ /user_form }}

e <template_name> is the name of the next template to be requested from the user
form
<button_name> is the name of the button for submitting the form
html_code: you can insert whatever HTML code you want in the <form> statement;
for example: {{ user_form .. html_code="id=\"my_id\"" }}

e button_html_code: you can insert whatever HTML code you want in the button
input field statement; such as: {{ user_form ..
button_html_code="id=\"my_submit_id\"" }}

Constraints:

Cannot be used inside subscription and login forms. Cannot be used within itself (for
example: user in user).

EDIT USER

Purpose:

Generates a text input field for editing the selected user attribute. This statement should be
used inside the user form.

Syntax:
1. {{ camp_edit object="search" attribute="<attribute>"
2. [html_code="<HTML_code>"]
3. [size ="<field length>"]
4. [columns="<max_columns>"]
5. [rows="<max_rows>"] }}

Filters:

<attribute> being one of the following:

name
uname

email

city
str_address
state

phone

fax

contact
second_phone
postal code
employer
position

262

how

languages

field |

field2

field3

field5

interests
improvements
textl|

text2

text3
password
passwordagain

The parameters (name, uname, email, city...) are fields describing the user's data; field | -
field5, text|-text3 are extra fields for storing extra information of your choice.

Note: the columns and rows parameters were implemented starting with Newscoop
version 3.2.2.

Constraints:

The user edit field can only be used inside the user form.

SELECT USER

Purpose:

Generates a drop-down list or radio buttons for selecting values for the given fields. This
statement should be used inside the user form.

Syntax:

{{ camp_select object="user" attribute="<attribute>"
[html_code="<HTML_code>"] }}

Filters:
<attribute> being one of the following:

gender

title

country

age
employertype
prefl

pref2

pref3

pref4

The parameters (country, title, gender...) are fields describing the user information; prefl -
pref4 are extra fields for storing extra information (the publication administrator sets their
meaning).

263

Constraints:

The select user field can only be used inside the user form.

264

8 5 . SUBSCRIPTION FORM

FORM - SUBSCRIPTION

Purpose:

Generate the form and default data fields for subscription. Edit and Select statements can be
used to generate fields for every section in an issue.

Syntax:
1. {{ subscription_form type="<subscription_type>"
2. [template="<template_name>"]
3. submit_button="<button_name>"
4. [total="<total_field_name>"]
5. [html_code="<html_code>"
6. [button_html_code="<html_code>"] }}
7. <list_of_instructions>
8. {{ /subscription_form }}

<subscription_type> has two values: by_publication and by_section

<template_name> is the name of the next template to be requested from the

subscription form

<button_name> is the name of the button for submitting the form

<total field name> is the name of the field where the total payment is written

e <evaluate button_name> is the name of the evaluate button (when pressing this
button, the total payment is updated in the total field

e html_code: you can insert whatever HTML code you want in the <form> statement;
for example: {{ user_form .. htm|_code="id=\"my_id\"" }}

e button_html_code: you can insert whatever HTML code you want in the button

input field statement; such as: {{ user_form ..

button_html_code="id=\"my_submit_id\"" }}

Constraints:

Cannot be used inside user and login forms. Cannot be used within itself (for example:
subscription in subscription).

EDIT SUBSCRIPTION

Purpose:

Generates an input field for editing the subscription time for a certain section. The section
must be defined in the template environment. This statement should be used inside the
subscription form.

Syntax:

{{ camp_edit object="search" attribute="time"
[html_code="<HTML_code>"]
[size ="<field_length>"] }}

265

Constraints:

The subscription edit field can only be used inside the subscription form.

SELECT SUBSCRIPTION

Purpose:

Special-purpose input for subscription data.

Syntax:

{{ camp_select object="subscription" attribute="<attribute>"
[html_code="<HTML_code>"] }}

Filters:
<attribute> being one of the following:

® section: generates a checkbox for selecting the current section in the subscription
form; use together with "List of Sections" (see also "Creating reader subscriptions
through the template language")

o alllanguages: generates a checkbox allowing the user to choose a subscription to all
available languages

® languages: generates a multiple selection list allowing the user to select individual
languages; this selection list is automatically deactivated if the user chose to subscribe
to all available languages.

Constraints:

The select subscription field can only be used inside the subscription form.

266

86 COMMENT FORM

FORM - COMMENT

Purpose:

Generate the form and default data fields for article comment submission. Inside the form
camp_edit statements can be used to generate article comment input fields.

Syntax:

{{ comment_form [template="<template_name>"]
submit_button="<submit_button_name>"
[preview_button="<preview_button_name>"]
[html_code="<html_code>"]
[button_html_code="<html_code>"] }}

<list_of_instructions>

{{ /comment_form }}

g oUW N

e <template_name>: the name of the next template to be requested when submitting
the comment

e <submit_button_name>: the name of the button for submitting the comment
<preview_button_name>: the name of the button for previewing the comment
html_code: you can insert whatever HTML code you want in the <form> statement;
for example: {{ user_form .. htm|_code="id=\"my_id\"" }}

e button_html_code: you can insert whatever HTML code you want in the button
input field statement; such as: {{ user_form ..
button_html_code="id=\"my_submit_id\"" }}

EDIT COMMENT

Purpose:

Generates text fields so that a user can enter a comment. This statement should be used
inside the comment form.

Syntax:
1. {{ camp_edit object="comment" attribute="<attribute>"
2. [html_code="<HTML_code>"]
3. [size ="<field length>"]
4. [columns="<max_columns>"]
5. [rows="<max_rows>"] }}

Filters:

<attribute> being one of the following:

nickname: a place for the user to type in a nickname
reader_email: a place for the user to type in their email address; this field is optional
for logged in readers because the email can be read from the subscribers database
e subject: a place for the user to type in a subject line for their comment
e content: a place for the user to type in their comment.

267

The attributes reader_email, subject and content are mandatory in each Edit Comment
form.

Note: the columns and rows parameters were implemented starting with Newscoop
version 3.2.2.

Constraints:

The comment edit field can only be used inside the comment form.

EDIT CAPTCHA

Purpose:

Generates a text field allowing the user to input the CAPTCHA code for spam control. This
statement should be used inside the comment form.

Syntax:

{{ camp_edit object="captcha" attribute="code"
[html_code="<HTML_code>"]
[size ="<field_length>"] }}

CAPTCHA IMAGELINK

Purpose:

"captcha_image link" will insert the link for the CAPTCHA image. Use inside an "img" HTML
tag as follows:

Syntax:

| {{ captcha_image_link }}

268

87 ACTION CHECK ON FORM SUBMISSION

EDIT SUBSCRIPTION ACTION

The edit_subscription_action object is initialized when a subscription form was submitted.
It has the following properties:

defined: true if a subscription submit action took place

is_error: true if a subscription submit action took place and the result was an error
error_code: error code of the subscription submit action; null if no subscription
submit action took place

error_message: error message of the subscription submit action; null if no
subscription submit action took place

ok: true if a subscription submit action took place and the result was success
is_trial: true if the submitted subscription type was trial

is_paid: true if the submitted subscription type was paid subscription

EDIT USER ACTION

The edit_user_action object is initialized when a user add/edit form was submitted. It has
the following properties:

defined: true if a user data submit action took place

is_error: true if a user data submit action took place and the result was an error
error_code: error code of the user data submit action; null if no user data submit
action took place

error_message: error message of the user data submit action; null if no user data
submit action took place

ok: true if a user data submit action took place and the result was success

type: can take one of the following two values: "add" for user add submit, "edit" for an
existing user data edit submit

name: the user full name as filled in the form

uname: the user login name as filled in the form

password: the account password as filled in the form

passwordagain: the password confirmation

email: the user email as filled in the form

city

str_address

state

phone

fax

contact

second_phone

postal_code

employer

position

interests

how

languages

improvements

field|

269

field2
field3
field4
field5
textl
text2
text3
country
title
gender
age
employertype
prefl
pref2
pref3
pref4

LOGIN ACTION

The login_action object is defined when a login action takes place. It has the following
properties:

defined: true if a login action took place

is_error: true if a login action took place and the result was an error

error_code: error code of the login action; null if no login action took place
error_message: error message of the login action; null if no login action took place
ok: true if a login action took place and the result was successful

user_name: the login name of the user that attempted to log in

remember_user: true if the remember user flag was set in the login form

PREVIEW COMMENT ACTION

The preview_comment_action object is initialized when the preview button is clicked on a
comment form. It has the following properties:

defined: true if a comment preview action took place
is_error: true if a comment preview action took place and the result was an error
e error_code: error code of the comment preview action; null if no comment preview
action took place
® error_message: error message of the comment preview action; null if no comment
preview action took place
ok: true if a comment preview action took place and the result was successful
subject: the comment subject as filled in the form
content: the comment content as filled in the form
reader_email: the comment reader email as filled in the form

SEARCH ARTICLES ACTION

The search_articles_action object is initialized when a search action takes place. It has the
following properties:

e defined: true if a search action took place
e is_error: true if a search action took place and the result was an error
e error_code: error code of the search action; null if no search action took place

270

error_message: error message of the search action; null if no search action took place
ok: true if a search action took place and the result was successful

search_phrase: the phrase for which the search was performed

search_keywords: an array of keywords for which the search was performed
match_all: true if the match all flag was set

search_level: 0 for multiple publication search, | for current publication search, 2 for
current issue search, 3 for current section search

submit_button: the submit button text

template: the template used on search form submission

SUBMIT COMMENT ACTION

The submit_comment_action object is initialized when a comment form is submitted. It has
the following properties:

defined: true if a comment submit action took place

is_error: true if a comment submit action took place and the result was an error
error_code: error code of the comment submit action; null if no comment submit
action took place

error_message: error message of the comment submit action; null if no comment
submit action took place

ok: true if a comment submit action took place and the result was successful
subject: the comment subject as filled in the form

content: the comment content as filled in the form

reader_email: the comment reader email as filled in the form

271

88 GENERAL FORM ELEMENTS AND
FUNCTIONS

FORM PARAMETERS

"formparameters" prints the runtime environment parameters in HTML form format. It
prints only data context parameters and can be used to create links.

Syntax:

|{{ formparameters [options="<options_list>"] }}

e <options_list> =
o <option>
o <option> <options_list>

e <option> =
o fromStart
o articleComment

Filters:

e fromstart: prints the parameters received at the start of the template, not the
current ones (useful when building site maps)

e articleComment: inserts the article comment identifier in the parameters list; if no
article comment was defined in the template environment, no parameter is inserted.
This attribute is needed if you want to pass the current comment id to another page
for display purposes.

OPTION INPUT FIELDS

Purpose:

Generate an option input field; these fields are used in forms to allow the reader to enter
data. These must be used in conjunction with the form statements.

Syntax:
1. {{ camp_select object="<object_name>"
2. attribute="<attribute_name>"
3. [html_code="<HTML_code>"] }}

If the html_code parameter was set, the HTML code will be inserted inside the input field.

Example:

{{ camp_select object="user"
attribute="country"
html_code="id=\"countryId\"" }}

The following code will output a pop-up list of available countries:

272

1. <select name="f_user_country" id="countryId">

N

3. </select>

TEXT INPUT FIELDS

Purpose:

Generate an input text field; these fields are used in forms to allow the reader to enter data.
These must be used in conjunction with the form statements.

Syntax:

{{ camp_edit object="<object_name>"
attribute="<attribute_name>"
[html_code="<HTML_code>"]
[size ="<field_length>"]
[columns="<max_columns>"]
[rows="<max_rows>"] }}

o Ul W N

For text input fields, if the size parameter was set, the input field size will be set to that
value. For text box fields, if the columns/rows parameter was set, the box will have the
given number of columns/rows.

Note: columns and rows parameters were implemented starting with Newscoop version
322.

If the html_code parameter was set, the HTML code will be inserted inside the input field.
For example, the following code:

{{ camp_edit object="user"
attribute="name"
html_code="id=\"userNameInput\"" }}

will output:

<input type="text" name="f_user_name" size="50" maxlength="255" id="userNameInp
ut">

273

TEMPLATE REFERENCE -
MAPS AND GEOLOCATION

89. MAP

90. DISPLAYING A MAP

9 1. LOCATION MULTIMEDIA
92. GEOLOCATION SEARCH

274

89 MAP

Note: this works only in Newscoop 3.5.0 and later versions.

Requires jQuery: In order to use display maps you must include jQuery in the header of
your document, with a link like this:

<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/
1/jquery.min.js">

The map_ object is usually initialized by the current article in the environment (see
"Article"). It is not initialized at the beginning of the template and can not be initialized by
other Newscoop functions. The map_ object has the following properties:

e name: the name given to the map

e provider: the map provider

® |ocations: a list of map locations, see the "Article Location" object

e is_enabled: TRUE if the map is enabled, FALSE otherwise
Examples

1. {{ if $gimme->map->is_enabled }}

2. <p>Map Name: {{ S$gimme->map->name }}</p>

3. <p>Map Provider: {{ $gimme->map->provider }}</p>

4. {{ /if }}

275

90 DISPLAYING A MAP

Note: this works only in Newscoop 3.5.0 and later versions.

Maps require jQuery: In order to use display maps you must include jQuery in the header
of your document, with a link like this:

<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/
1/jquery.min. js">

Purpose:

"map" prints a geolocation map and the list of locations. The article containing the map must
have been previously initialized, otherwise this function will display nothing.

Syntax:

width="<width_value>"]

height="<height_value>"]
show_locations_list="<boolean_value>"]
show_reset_link="<string_value>|<boolean_value>"] }}

{{ map

Filters:

e width: <width_value> Width size for the Map frame to be displayed
height: <height_value> Height size for the Map frame to be displayed
show_locations_list: <boolean_value> Whether the list of map locations is displayed
or not. Default value FALSE

o show_reset_link: <string value> | <boolean value> Whether the link to reset the Map
to the initial view is displayed or not. Default value TRUE. If a string is provided
instead of TRUE or true, then the string will be used as the link text instead of the
default text.

STYLING THE MAP VIEW

Below you can see an example of the code generated by Newscoop to display a Map. You
can style the way it looks like by defining CSS styles for the classes.

1. <!-— Map Container START //-—>

2. <div class="geomap_container">

3. <!-- Map general info and

4. locations Container START //—-—>

5. <div class="geomap_locations">

6. <!-- Map General Info (Title)

7. START //-—>

8. <div class="geomap_info">

9. <dl class="geomap_map_name">

10. <dt
11. class="geomap_map_name_label">Map:</dt>
12. <dd
13. class="geomap_map_name_value">My Map</dd>
14. </d1l>
15. </div>
16. <!-- Map General Info (Title)
17. END //-——>
18. <!-- Map Locations List START
19. //-—>

20. <div id="side_info"
21. class="geo_side_info">

22. <!-- Map Location Nr. 1 START
23. //-——>

24. <div id="poi_seq 0">

25. <a class="geomap_poi_name"

26. href="4"
27. onClick="geo_hook_on_map_feature_select (geo_object_61_1, 0);
28. return false;">POI no. 1

29. <div

30. class="geomap_poi_perex"></div>
31. <div

32. class="geomap_poi_center">

33. <a href="#"

34. onClick="geo_object_61_l.center_lonlat (14.753722843736,
35. 48.948841006863); return false;">Center

36. </div>

37. <div

38. class="geomap_poi_spacer"> </div>
39. </div>

40. <!-- Map Location Nr. 1 END

41. //-—>

42. <!-- Map Location Nr. 2 START
43, //-——>

44. <div id="poi_seq 1">

45. <a class="geomap_poi_name"

46. href="4"
47. onClick="geo_hook_on_map_feature_select (geo_object_61_1, 1);
48. return false;">POI Name

49. <div

50. class="geomap_poi_perex">Any text</div>

51. <div

52. class="geomap_poi_center"> <a href="#"

53. onClick="geo_object_61_1l.center_ lonlat (1.240539250526,
54. 47.067502513872); return false;">Center

55. </div>

56. <div

57. class="geomap_poi_spacer"> </div>
58. </div>

59. <!-— Map Location Nr. 2 END
60. //-—>

61. </div>

62. <!-- Map Locations List END
63. //——>

64. </div>

65. <!-- Map general info and

66. locations Container START //-——>
67. <!-- Map Menu (Show Reset Link)
68. START //-—>

69. <div class="geomap_menu">

70. <a href="4"

71. onClick="geo_object_61_1.map_showview(); return false;">Gimme
72. my map

73. </div>

74. <!-- Map Menu (Show Reset Link)
75. END //-—>

76. <!-— Map Render Area START //-—>
77. <div class="geomap_map">

78. <diwv

79. id="geo_map_mapcanvas_61l_1"></div>
80. </div>

81. <!-—— Map Render Area END //-—>
82. </div>

83. <div style="clear:both"
84. ></div>

Sourcefabric provides some styling definitions as part of the sample templates.

277

9 I . LOCATION MULTIMEDIA

Note: this works only in Newscoop 3.5.0 and later versions.

Maps require jQuery : In order to use display maps you must include jQuery in the header
of your document, with a link like this:

<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/
1/jquery.min.js">

The location multimedia object is usually initialized inside an Article Location object. It is not
initialized at the beginning of the template and cannot be initialized by other Newscoop
functions. The location multimedia object has the following properties:

e src: the media URL (for images), identifier (for YouTube, Vimeo videos), or file name
(for flash, flv videos)

® type: can be "image" or "video"

e spec: for video type it can return the following: "youtube", "vimeo", "flash", "flv"; for
image the empty string

e width: integer specifying the media frame width in pixels; the media is resized to this
width (if non-zero)

® height: integer specifying the media frame height in pixels; the media is resized to this
height (if non-zero)

278

92 GEOLOCATION SEARCH

The javascript/geocoding/map_search.js file has implemented a class for a map with the
capability for the user to specify a search area. The area is selected via a half-transparent
box. The output should be sent to the server where processed, as described below.

The search map can be used via the GetMapSearchHeader, GetMapSearchBody, and
GetMapSearchCenter static methods of the Geo_Map class. They work in a similar way to
the preview/tag functions. You can provide width and height values for the search map and
optionally a list of four <div> ids for automatic storage of top-left and bottom-right
longitude/latitude values. The values can be taken from the class by calling the get_top_left
and get_bottom_right methods of an instantiated object.

An example of the visual search interface is in the admin-files/articles/locations/search.php
file.

The Geo_Map::GetGeoSearchSQLQuery takes two coordinates - opposite corners of the
search area - and it returns a SQL statement for the database search. The two corners
should go from West to East, otherwise it would not be known whether the box goes over
the 180/-180 meridian or not. It is as shown below:

1. // going east to west over the 180/-180, and south to north

2. $p_coordinates = array();

3. $p_coordinates[] = array("longitude" => "150", "latitude" => "20");
4. S$p_coordinates[] = array("longitude" => "40", "latitude" => "60");
5.

6. // going directly west to east, and north to south

7. $p_coordinates = array();

8. $p_coordinates[] = array("longitude" => "-10", "latitude" => "60");
9. S$p_coordinates[] = array("longitude" => "40", "latitude" => "-20");
10.
11. S$query = Geo_Map: :GetGeoSearchSQLQuery ($p_coordinates) ;
12. echo $query;

279

TEMPLATE REFERENCE -
MODIFIERS

93. DATE AND E-MAIL FORMATTING
94. FILE SIZE FORMATTING

95. TRUNCATING UTF8 STRINGS
96. URL DISPLAY AND MODIFYING

280

93 DATE AND E-MAIL FORMATTING

DATE FORMATTING

The "camp_date_format" modifier formats a date string as specified:

’{{ <string>|camp_date_format:"<date_attribute>" }} |

l({ <string>|camp_date_format:"<date_format>" }} |

Filters:
<date_attribute> may be one of the following:

year: year (four digits)

mon: month as a number (I..12)

mday: day of the month as a number (1..31)

yday: day of the year (1..366)

wday: day of the week as a number (0=Sunday..6=Saturday)
hour: hour (0..23)

min: minute (two digits)

sec: seconds (two digits)

mon_name: name of the month

wday name: day of the week

<date format> may contain any printable character; escape " (double quotes) in the date
formatting with \ (backslash). For example: "%M %e, %Y, \"%W\"" will display the the date like
this: July 5, 2008, "Saturday".

The following groups of characters have special meaning:

%M - month name

%W - weekday name

%Y - year (4 digits)

%y - year (2 digits)

%m - month (01..12)

%c - month (1..12)

%w - day of the week (0=Sunday..6=Saturday)
%d - day of the month (00.31)

%e - day of the month (0.31)

%j - day of the year (001..366)

%D - day of the month with English suffix (1st, 2nd, 3rd etc.)
%H - hour in format 00..23

%h - hour in format 01..12

%l - hour in format 1..12

%i - minutes in format 00..59

%S - seconds in format 00..59

%s - is an alias of %S

%p - AM or PM

281

Constraints:

None

EMAIL OBFUSCATION

The "obfuscate_email" modifier obfuscates a string; the email string is obfuscated to prevent
spambot web crawlers from finding it.

{{ <email_string>|obfuscate_email }}

282

94 FILE SIZE FORMATTING

The "camp _filesize format" modifier formats an integer in Byte specific multiples:

{{ <integer>|camp_filesize_format:"<filesize_format>" }}

<filesize_format> may take one of the following values:

e TB: for displaying the size in terabytes
e GB: for displaying the size in gigabytes
e MB: for displaying the size in megabytes
e KB: for displaying the size in kilobytes

e B:for displaying the size in bytes

283

95 TRUNCATING UTF8 STRINGS

The "truncate_utf8" modifier behaves exactly like the Smarty truncate modifier, except that
it works properly on UTF8 strings. See more details on truncate here:

http://www.smarty.net/manual/en/language.modifier.truncate.php

284

http://www.smarty.net/manual/en/language.modifier.truncate.php

96 URL DISPLAY AND MODIFYING

DISPLAYING THE URL

Purpose:

"uripath” prints only the path part of the URI, the part before the parameters list. If
"/en/1/2/3?param | =text" was the full URI, the URI path is "/en/1/2/3".

"urlparameters" prints the runtime environment parameters in URL format.

"uri" prints the complete link URI and it is equivalent to:

{{ uripath }}?{{ urlparameters }}

"url" prints the complete URL in the form:

http://[site_alias] [uri]

It is equivalent to:

http://{{ $gimme->publication->site }}{{ uri }}

Note:

e All four statements work for both template path and short URL types. Depending on
the URL type, the statement displays the proper link

e For publications with short URL type the only way to create links is to use these

three statements: either url, uri, uripath or urlparameters. It is not possible to build
the URI manually

Syntax:
1. {{ url [options="<options_list>"] }}
2. {{ uri [options="<options_1list>"] }}
3. {{ uripath [options="<options_list>"] }}
4. {{ urlparameters [options="<options_list>"] }}

285

Filters:

e <options_list>=

o
o

<option> <list_of options>
<option>

e <option>=

)

0O 0O 0O 0O0O0O OO O OO OO O 0O O OO0 0 0 o

fromstart

reset_issue_list
reset_section_list
reset_article_list
reset_searchresult_list
reset_subtitle_list

image <image number> <image options>
root_level

language

publication

issue

section

article

template <template_name>
articleAttachment
articleComment
audioAttachment
previous_subtitle <field name>
next_subtitle <field name>
all_subtitles <field name>
previous_items

next_items

<image_number> is an <integer_value> representing a valid number of article images

<template_name> is a <string value> representing the full path of a valid template

e fromstart: prints the url corresponding to the received request, before any changes
were made to the template runtime environment (useful when building site maps)

reset_issue_list: reset list counters for the issues list

reset_section_list: reset list counters for the sections list

reset_article_list: reset list counters for the articles list

reset_searchresult_list: reset list counters for the search results list
reset_subtitle list: reset list counters for the subtitles list

image: print image parameters in order to show an image in a template; if you use this

statement inside the "List of Article Images" statement the image number value is not
mandatory. The image options are different depending on the Newscoop version

For Newscoop versions 3.0-3.3:

<image_options>=<image_ratio>.

The "image_ratio" parameter is an integer between | and 100. The image will be scaled from
1% of it's size to 100% based on the image ratio parameter.

For Newscoop versions 3.4 and newer:

<image_options>=<image_ratio>|width <width>|height <height>.

286

The "image_ratio" parameter is the same as above. You can specify an image to be resized to
the given width or height.

E.g.: {{ uri options="image | width 100 height 100 }}

root_level: this link will have all parameters reset: language, publication, issue, section,
article, subtitle, lists, indexes etc.

language: this link will have all parameters above language reset: publication, issue,
section, article, subtitle, lists, indexes etc.; the language parameter remains unchanged
publication: this link will have all parameters above publication reset: issue, section,
article, subtitle, lists, indexes etc.; the language and publication parameters remain
unchanged

issue: this link will have all parameters above issue reset: section, article, subtitle, lists,
indexes etc.; language, publication and issue parameters remain unchanged

section: this link will have all parameters above section reset: article, subtitle, lists,
indexes etc.; language, publication, issue and section parameters remain unchanged
article: this link will have all parameters above article reset: article, subtitle, lists,
indexes etc.; language, publication, issue, section and article parameters remain
unchanged

template <template_name>: this link will set the template in the link to
<template_name>

articleAttachment: displays the link for the current article attached document
articleComment: inserts the article comment identifier in the parameters list; if no
article comment was defined in the template environment, no parameter is inserted.
This attribute is needed if you want to pass on the current comment id to another
page for display purposes

audioAttachment: displays the link for the current audio file attached to the article
previous_subtitle <field_name>: add a parameter to the URI to select the previous
subtitle of the given <field_name> for display

next_subtitle <field_name>: add a parameter to the URI to select the next subtitle of
the given <field _name> for display

all_subtitles <field name>: add a parameter to the URI to select all subtitles of the
given <field_name> for display

previous_items: add a parameter to the URI to select the previous interval of the
current list items for display

next_items: add a parameter to the URI to select the next interval of the current list
items for display

Constraints:

None.

Examples:

For the canonical tag often used for SEO (search engine optimization) you should use...

on article level

<link rel="canonical" href="{{ url options="article" }}" />

on section level

<link rel="canonical" href="{{ url options="section" }}" />

on front page / index level

287

<link rel="canonical" href="http://{{ $gimme->publication->site }}" />

288

APPENDIX

97. CREDITS AND LICENSE

289

97 CREDITS AND LICENSE

Newscoop is being developed by an international community of developers and designers
led by Sourcefabric.

http://newscoop.sourcefabric.org

Copyright 201 | Sourcefabric o.p.s.
Copyright 1999-2010 Media Development Loan Fund.

LICENSE

All chapters in this manual are licensed with the GNU General Public License version 3.

This documentation is free documentation; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later version.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
documentation; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
Floor, Boston, MA 021 10-1301, USA.

GNU GENERAL PUBLIC LICENSE

Version 3,29 June 2007
Copyright 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program--to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies of
free software (and charge for them if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new free programs, and
that you know you can do these things.

290

http://newscoop.sourcefabric.org/
http://fsf.org/

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no
warranty for this free software. For both users' and authors' sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally
incompatible with the aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for individuals to use,
which is precisely where it is most unacceptable. Therefore, we have designed this version
of the GPL to prohibit the practice for those products. If such problems arise substantially
in other domains, we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in
those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS
0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

"The Program" refers to any copyrightable work licensed under this License. Each licensee is
addressed as "you". "Licensees" and "recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting work
is called a "modified version" of the earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based on the Program.

291

To "propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To "convey" a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices" to the extent that it
includes a convenient and prominently visible feature that (I) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except to
the extent that warranties are provided), that licensees may convey the work under this
License, and how to view a copy of this License. If the interface presents a list of user
commands or options, such as a menu, a prominent item in the list meets this criterion.

I. Source Code.

The "source code" for a work means the preferred form of the work for making
madifications to it. "Object code" means any non-source form of a work.

A "Standard Interface" means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which is
not part of that Major Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A "Major Component”, in this context, means a
major essential component (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify
the work, including scripts to control those activities. However, it does not include the
work's System Libraries, or general-purpose tools or generally available free programs which
are used unmodified in performing those activities but which are not part of the work. For
example, Corresponding Source includes interface definition files associated with source
files for the work, and the source code for shared libraries and dynamically linked
subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate
automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

292

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its content, constitutes a
covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively for
you, or provide you with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do not control copyright.
Those thus making or running the covered works for you must do so exclusively on your
behalf, under your direction and control, on terms that prohibit them from making any
copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section |0 makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article | | of the WIPO copyright treaty adopted on
20 December 1996, or similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against the work's users,
your or third parties' legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices of
the absence of any warranty; and give all recipients a copy of this License along with the
Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also
meet all of these conditions:

® a) The work must carry prominent notices stating that you modified it, and giving a
relevant date.

293

® b) The work must carry prominent notices stating that it is released under this
License and any conditions added under section 7. This requirement modifies the
requirement in section 4 to "keep intact all notices".

e c) You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license the
work in any other way, but it does not invalidate such permission if you have
separately received it.

e d) If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are
not by their nature extensions of the covered work, and which are not combined with it
such as to form a larger program, in or on a volume of a storage or distribution medium, is
called an "aggregate" if the compilation and its resulting copyright are not used to limit the
access or legal rights of the compilation's users beyond what the individual works permit.
Inclusion of a covered work in an aggregate does not cause this License to apply to the
other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the
terms of this License, in one of these ways:

e 2a) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

e b) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange, for
a price no more than your reasonable cost of physically performing this conveying of
source, or (2) access to copy the Corresponding Source from a network server at
no charge.

e ¢) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally and
noncommercially, and only if you received the object code with such an offer, in
accord with subsection éb.

e d) Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to
copy the Corresponding Source along with the object code. If the place to copy the
object code is a network server, the Corresponding Source may be on a different
server (operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find
the Corresponding Source. Regardless of what server hosts the Corresponding
Source, you remain obligated to ensure that it is available for as long as needed to
satisfy these requirements.

294

e ¢) Convey the object code using peer-to-peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are being
offered to the general public at no charge under subsection éd.

A separable portion of the object code, whose source code is excluded from the
Corresponding Source as a System Library, need not be included in conveying the object
code work.

A "User Product" is either (1) a "consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2)
anything designed or sold for incorporation into a dwelling. In determining whether a
product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a
particular product received by a particular user, "normally used" refers to a typical or
common use of that class of product, regardless of the status of the particular user or of
the way in which the particular user actually uses, or expects or is expected to use, the
product. A product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.

"Installation Information" for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to
continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been modified
or installed. Access to a network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key
for unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable to
the entire Program shall be treated as though they were included in this License, to the
extent that they are valid under applicable law. If additional permissions apply only to part of
the Program, that part may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the additional permissions.

295

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement the
terms of this License with terms:

e a) Disclaiming warranty or limiting liability differently from the terms of sections 15
and | 6 of this License; or

® b) Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing it;
or

e ¢) Prohibiting misrepresentation of the origin of that material, or requiring that
modified versions of such material be marked in reasonable ways as different from
the original version; or

e d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e ¢) Declining to grant rights under trademark law for use of some trade names,
trademarks, or service marks; or

e f) Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions of
liability to the recipient, for any liability that these contractual assumptions directly
impose on those licensors and authors.

All other non-permissive additional terms are considered "further restrictions" within the
meaning of section |0. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction, you
may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material
governed by the terms of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a notice
indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section | 1).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

296

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
However, nothing other than this License grants you permission to propagate or modify any
covered work. These actions infringe copyright if you do not accept this License. Therefore,
by modifying or propagating a covered work, you indicate your acceptance of this License to
do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties with this License.

An "entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations. If
propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party's predecessor in interest had or could give under the previous paragraph, plus a
right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is
infringed by making, using, selling, offering for sale, or importing the Program or any portion
of it.

I 1. Patents.

A "contributor" is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor's
"contributor version".

A contributor's "essential patent claims" are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by
some manner, permitted by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition, "control" includes
the right to grant patent sublicenses in a manner consistent with the requirements of this
License.

297

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under
the contributor's essential patent claims, to make, use, sell, offer for sale, import and
otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express agreement or
commitment, however denominated, not to enforce a patent (such as an express
permission to practice a patent or covenant not to sue for patent infringement). To "grant"
such a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms
of this License, through a publicly available network server or other readily accessible
means, then you must either (1) cause the Corresponding Source to be so available, or (2)
arrange to deprive yourself of the benefit of the patent license for this particular work, or
(3) arrange, in a manner consistent with the requirements of this License, to extend the
patent license to downstream recipients. "Knowingly relying" means you have actual
knowledge that, but for the patent license, your conveying the covered work in a country,
or your recipient's use of the covered work in a country, would infringe one or more
identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or
convey a specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works based on it.

A patent license is "discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered work if
you are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent license (a) in
connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot convey a covered work so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you agree to terms that obligate you to collect a
royalty for further conveying from those to whom you convey the Program, the only way
you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

298

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work. The
terms of this License will continue to apply to the part which is the covered work, but the
special requirements of the GNU Affero General Public License, section |3, concerning
interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License "or any later version" applies to it,
you have the option of following the terms and conditions either of that numbered version
or of any later version published by the Free Software Foundation. If the Program does not
specify a version number of the GNU General Public License, you may choose any version
ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy's public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

I5. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

299

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

300

Made with Booki

Visit http://software.booki.cc

